論文の概要: Multi-Modal 3D Object Detection in Autonomous Driving: a Survey
- arxiv url: http://arxiv.org/abs/2106.12735v2
- Date: Fri, 25 Jun 2021 15:39:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 05:34:41.990414
- Title: Multi-Modal 3D Object Detection in Autonomous Driving: a Survey
- Title(参考訳): 自律走行における多モード3次元物体検出:サーベイ
- Authors: Yingjie Wang, Qiuyu Mao, Hanqi Zhu, Yu Zhang, Jianmin Ji, Yanyong
Zhang
- Abstract要約: 自動運転車には、堅牢で正確な環境認識を行うための一連のセンサーが備わっている。
センサーの数や種類が増加し続けており、それらを組み合わせることで知覚を向上させることが自然のトレンドになりつつある。
この調査では、複数のセンサデータソースを利用する、最近の核融合に基づく3D検出ディープラーニングモデルについてレビューする。
- 参考スコア(独自算出の注目度): 10.913958563906931
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past few years, we have witnessed rapid development of autonomous
driving. However, achieving full autonomy remains a daunting task due to the
complex and dynamic driving environment. As a result, self-driving cars are
equipped with a suite of sensors to conduct robust and accurate environment
perception. As the number and type of sensors keep increasing, combining them
for better perception is becoming a natural trend. So far, there has been no
indepth review that focuses on multi-sensor fusion based perception. To bridge
this gap and motivate future research, this survey devotes to review recent
fusion-based 3D detection deep learning models that leverage multiple sensor
data sources, especially cameras and LiDARs. In this survey, we first introduce
the background of popular sensors for autonomous cars, including their common
data representations as well as object detection networks developed for each
type of sensor data. Next, we discuss some popular datasets for multi-modal 3D
object detection, with a special focus on the sensor data included in each
dataset. Then we present in-depth reviews of recent multi-modal 3D detection
networks by considering the following three aspects of the fusion: fusion
location, fusion data representation, and fusion granularity. After a detailed
review, we discuss open challenges and point out possible solutions. We hope
that our detailed review can help researchers to embark investigations in the
area of multi-modal 3D object detection.
- Abstract(参考訳): 過去数年間、我々は自動運転の急速な発展を目撃してきた。
しかし、複雑でダイナミックな運転環境のため、完全な自律性を実現することは依然として厄介な課題である。
その結果、自動運転車は、堅牢で正確な環境認識を行うための一連のセンサーを備えている。
センサーの数や種類が増加し続けており、それらを組み合わせて知覚を向上させることが自然なトレンドになりつつある。
これまでのところ、マルチセンサー融合に基づく知覚に焦点を当てた詳細なレビューは行われていない。
このギャップを埋め、将来の研究を動機付けるために、この調査では、複数のセンサーデータソース、特にカメラやLiDARを活用する、最近のフュージョンベースの3D検出ディープラーニングモデルについてレビューする。
本調査では,各センサデータに共通するデータ表現やオブジェクト検出ネットワークを含む,自動運転車用の一般的なセンサの背景について紹介する。
次に,マルチモーダル3dオブジェクト検出のための一般的なデータセットについて議論し,各データセットに含まれるセンサデータに着目した。
次に, 核融合位置, 核融合データ表現, 核融合粒度の3つの側面を考慮し, 最新のマルチモーダル3次元検出ネットワークについて詳細に検討する。
詳細なレビューの後、オープンチャレンジについて議論し、可能な解決策を指摘します。
われわれの詳細なレビューが、マルチモーダルな3Dオブジェクト検出の分野での研究に役立てることを願っている。
関連論文リスト
- DetZero: Rethinking Offboard 3D Object Detection with Long-term
Sequential Point Clouds [55.755450273390004]
既存のオフボード3D検出器は、無限の逐次点雲を利用するために常にモジュラーパイプライン設計に従っている。
その結果, 物体の運動状態は, 物体中心の精製段階において必然的な課題となること, 物体の運動状態は, 物体軌道を十分に生成できないこと, 物体中心の精製段階において必然的な課題となること, の2つの理由から, オフボード型3D検出器の完全なポテンシャルは明らかにされていないことがわかった。
これらの問題に対処するために,DetZero という,オフボード型3次元物体検出の新たなパラダイムを提案する。
論文 参考訳(メタデータ) (2023-06-09T16:42:00Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
マルチモーダル3次元検出のためのボックスマッチング(FBMNet)による新しいフュージョンネットワークを提案する。
3Dオブジェクトと2Dオブジェクトの提案を学習することで、ROI特徴を組み合わせることで、検出のための融合を効果的に行うことができる。
論文 参考訳(メタデータ) (2023-05-12T18:08:51Z) - RMMDet: Road-Side Multitype and Multigroup Sensor Detection System for
Autonomous Driving [3.8917150802484994]
RMMDetは、自動運転のための道路側マルチタイプおよびマルチグループセンサー検出システムである。
ROSベースの仮想環境を用いて実環境をシミュレートする。
局所的なデータセットと実際のサンドテーブルフィールドを作成し、様々な実験を行う。
論文 参考訳(メタデータ) (2023-03-09T12:13:39Z) - HUM3DIL: Semi-supervised Multi-modal 3D Human Pose Estimation for
Autonomous Driving [95.42203932627102]
3Dの人間のポーズ推定は、自動運転車が歩行者の微妙で複雑な振る舞いを知覚し理解できるようにする新しい技術である。
提案手法は,これらの補完信号を半教師付き方式で効率的に利用し,既存の手法よりも大きなマージンで性能を向上する。
具体的には、LiDAR点を画素整列マルチモーダル特徴に埋め込み、トランスフォーマーの精細化段階を経る。
論文 参考訳(メタデータ) (2022-12-15T11:15:14Z) - 3D Object Detection for Autonomous Driving: A Comprehensive Survey [48.30753402458884]
自動運転車の近くで重要な3Dオブジェクトの位置、サイズ、カテゴリをインテリジェントに予測する3Dオブジェクト検出は、認識システムの重要な部分である。
本稿では,自律運転における3次元物体検出技術の進歩を概観する。
論文 参考訳(メタデータ) (2022-06-19T19:43:11Z) - Multimodal Virtual Point 3D Detection [6.61319085872973]
ライダーをベースとしたセンサーは、現在の自動運転車を駆動する。
現在のLidarセンサーは、解像度とコストに関して従来のカラーカメラより20年遅れている。
本稿では,RGBセンサをLidarベースの3D認識にシームレスに融合する手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:58:01Z) - Radar Voxel Fusion for 3D Object Detection [0.0]
本稿では,3次元物体検出のための低レベルセンサ融合ネットワークを開発する。
レーダーセンサーの融合は、雨や夜景のような裂け目状態において特に有益である。
論文 参考訳(メタデータ) (2021-06-26T20:34:12Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - 3D Object Detection for Autonomous Driving: A Survey [14.772968858398043]
3次元物体検出は、そのような知覚システムの中核となる基礎となる。
既存の努力にもかかわらず、ポイントクラウド上の3Dオブジェクト検出はまだ初期段階にある。
近年, プロスとコンスを用いた最先端検出法が提案されている。
論文 参考訳(メタデータ) (2021-06-21T03:17:20Z) - PC-DAN: Point Cloud based Deep Affinity Network for 3D Multi-Object
Tracking (Accepted as an extended abstract in JRDB-ACT Workshop at CVPR21) [68.12101204123422]
点雲は3次元座標における空間データの密集したコンパイルである。
我々は3次元多目的追跡(MOT)のためのPointNetベースのアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-03T05:36:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。