論文の概要: Constrained Classification and Policy Learning
- arxiv url: http://arxiv.org/abs/2106.12886v2
- Date: Mon, 24 Jul 2023 20:12:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 22:10:34.621701
- Title: Constrained Classification and Policy Learning
- Title(参考訳): 制約付き分類と政策学習
- Authors: Toru Kitagawa, Shosei Sakaguchi, and Aleksey Tetenov
- Abstract要約: 制約付き分類器の集合における代理損失手順の整合性について検討する。
ヒンジ損失が第2のベストシナリオにおける一貫性を維持する唯一のサロゲート損失であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern machine learning approaches to classification, including AdaBoost,
support vector machines, and deep neural networks, utilize surrogate loss
techniques to circumvent the computational complexity of minimizing empirical
classification risk. These techniques are also useful for causal policy
learning problems, since estimation of individualized treatment rules can be
cast as a weighted (cost-sensitive) classification problem. Consistency of the
surrogate loss approaches studied in Zhang (2004) and Bartlett et al. (2006)
crucially relies on the assumption of correct specification, meaning that the
specified set of classifiers is rich enough to contain a first-best classifier.
This assumption is, however, less credible when the set of classifiers is
constrained by interpretability or fairness, leaving the applicability of
surrogate loss based algorithms unknown in such second-best scenarios. This
paper studies consistency of surrogate loss procedures under a constrained set
of classifiers without assuming correct specification. We show that in the
setting where the constraint restricts the classifier's prediction set only,
hinge losses (i.e., $\ell_1$-support vector machines) are the only surrogate
losses that preserve consistency in second-best scenarios. If the constraint
additionally restricts the functional form of the classifier, consistency of a
surrogate loss approach is not guaranteed even with hinge loss. We therefore
characterize conditions for the constrained set of classifiers that can
guarantee consistency of hinge risk minimizing classifiers. Exploiting our
theoretical results, we develop robust and computationally attractive hinge
loss based procedures for a monotone classification problem.
- Abstract(参考訳): AdaBoost、サポートベクターマシン、ディープニューラルネットワークを含む最新の機械学習アプローチでは、代理損失技術を使用して、経験的分類リスクを最小限に抑える計算複雑性を回避する。
これらの手法は、個別化処理規則の推定を重み付けされた(コストに敏感な)分類問題とすることができるため、因果ポリシー学習問題にも有用である。
Zhang (2004) と Bartlett et al. (2006) で研究された代理損失アプローチの一貫性は、正しい仕様の仮定に決定的に依存している。
しかし、この仮定は、分類器の集合が解釈可能性や公正性によって制約されている場合、より信頼性が低い。
本稿では,制約付き分類器群の下でのサーロゲート損失手続きの整合性について,正しい仕様を仮定することなく検討する。
制約が分類器の予測セットのみを制限する場合、ヒンジ損失(例えば$\ell_1$- Support vector machine)が第2のベストシナリオにおける一貫性を維持する唯一のサロゲート損失であることを示す。
制約が分類器の機能形式を付加的に制限すると、ヒンジ損失であってもサーロゲート損失アプローチの一貫性は保証されない。
したがって、制約付き分類器の条件を特徴付け、ヒンジリスク最小化分類器の整合性を保証する。
理論結果を生かして,単音分類問題に対するロバストかつ計算上魅力的なヒンジ損失法を開発した。
関連論文リスト
- Predictor-Rejector Multi-Class Abstention: Theoretical Analysis and Algorithms [30.389055604165222]
マルチクラス分類設定において,留意を伴う学習の鍵となる枠組みについて検討する。
この設定では、学習者は事前に定義されたコストで予測をしないことを選択できる。
我々は、強い非漸近的および仮説的整合性を保証するために、いくつかの新しい代理損失の族を導入する。
論文 参考訳(メタデータ) (2023-10-23T10:16:27Z) - Probabilistic Safety Regions Via Finite Families of Scalable Classifiers [2.431537995108158]
監視された分類は、データのパターンを認識して、振る舞いのクラスを分離する。
正準解は、機械学習の数値近似の性質に固有の誤分類誤差を含む。
本稿では,確率論的安全性領域の概念を導入し,入力空間のサブセットとして,誤分類されたインスタンスの数を確率論的に制御する手法を提案する。
論文 参考訳(メタデータ) (2023-09-08T22:40:19Z) - The Adversarial Consistency of Surrogate Risks for Binary Classification [20.03511985572199]
逆行訓練は、各例が小さなボール内で悪質に破損する可能性がある場合に、予想される0$-$1$損失を最小限にすることを目指している。
我々は、一貫した代理損失関数の集合の単純かつ完全な特徴づけを与える。
本結果から, 逆一貫したサロゲートのクラスは, 標準設定よりもかなり小さいことが明らかとなった。
論文 参考訳(メタデータ) (2023-05-17T05:27:40Z) - Minimax risk classifiers with 0-1 loss [7.650319416775203]
本稿では,不確実な分布集合に対する最悪の0-1損失を最小限に抑えるミニマックスリスク分類器(MRC)を提案する。
MRCは学習時に厳密な性能保証を提供し,特徴カーネルが与える特徴写像を用いて,一意に一貫した特徴を持つことを示す。
また, MRC学習における効率的な最適化手法を提案し, 提案手法は, 厳密な性能保証とともに, 正確な分類を行うことができることを示した。
論文 参考訳(メタデータ) (2022-01-17T16:00:07Z) - Lower-bounded proper losses for weakly supervised classification [73.974163801142]
本稿では,弱いラベルが与えられた分類の弱い教師付き学習の問題について議論する。
サベージ表現を双対化する教師付き学習における適切な損失を表す表現定理を導出する。
提案手法の有効性を,不適切な損失や非有界損失と比較して実験的に実証した。
論文 参考訳(メタデータ) (2021-03-04T08:47:07Z) - A Symmetric Loss Perspective of Reliable Machine Learning [87.68601212686086]
平衡誤差率 (BER) の最小化において, 対称損失が破損ラベルからのロバストな分類をいかに生み出すかを検討する。
我々は、関連するキーワードからのみ学習したい問題において、AUC手法が自然言語処理にどのように役立つかを実証する。
論文 参考訳(メタデータ) (2021-01-05T06:25:47Z) - Classification with Rejection Based on Cost-sensitive Classification [83.50402803131412]
学習のアンサンブルによる拒絶を用いた新しい分類法を提案する。
実験により, クリーン, ノイズ, 正の未ラベル分類における提案手法の有用性が示された。
論文 参考訳(メタデータ) (2020-10-22T14:05:05Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z) - Calibrated Surrogate Losses for Adversarially Robust Classification [92.37268323142307]
線形モデルに制限された場合の逆0-1損失に対して凸代理損失は考慮されないことを示す。
また,Massartの雑音条件を満たす場合,対向条件下では凸損失も校正可能であることを示す。
論文 参考訳(メタデータ) (2020-05-28T02:40:42Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。