論文の概要: Encoding Involutory Invariance in Neural Networks
- arxiv url: http://arxiv.org/abs/2106.12891v1
- Date: Mon, 7 Jun 2021 16:07:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-27 11:38:12.587068
- Title: Encoding Involutory Invariance in Neural Networks
- Title(参考訳): ニューラルネットワークにおける畳み込み不変性の符号化
- Authors: Anwesh Bhattacharya, Marios Mattheakis, Pavlos Protopapas
- Abstract要約: ある状況では、ニューラルネットワーク(NN)は、基礎となる物理対称性に従うデータに基づいて訓練される。
本研究では、関数がパリティまでのインボリュート線型/ファイン変換に対して不変な特別な対称性について検討する。
数値実験により,提案モデルが与えられた対称性を尊重しながらベースラインネットワークより優れていたことが示唆された。
また,本手法を水平/垂直反射対称性を持つデータセットに対する畳み込みNN分類タスクに適用する手法も提案されている。
- 参考スコア(独自算出の注目度): 1.6371837018687636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In certain situations, Neural Networks (NN) are trained upon data that obey
underlying physical symmetries. However, it is not guaranteed that NNs will
obey the underlying symmetry unless embedded in the network structure. In this
work, we explore a special kind of symmetry where functions are invariant with
respect to involutory linear/affine transformations up to parity $p=\pm 1$. We
develop mathematical theorems and propose NN architectures that ensure
invariance and universal approximation properties. Numerical experiments
indicate that the proposed models outperform baseline networks while respecting
the imposed symmetry. An adaption of our technique to convolutional NN
classification tasks for datasets with inherent horizontal/vertical reflection
symmetry has also been proposed.
- Abstract(参考訳): ある状況では、ニューラルネットワーク(NN)は基礎となる物理対称性に従うデータに基づいて訓練される。
しかし、nnsがネットワーク構造に埋め込まれない限り、基盤となる対称性に従うことは保証されない。
本研究では、関数がパリティ$p=\pm 1$まで不変な線型/アフィン変換に対して不変な特別な対称性について検討する。
数学的定理を開発し、不変性と普遍近似特性を保証するNNアーキテクチャを提案する。
数値実験により,提案モデルが与えられた対称性を尊重しながらベースラインネットワークより優れていることが示された。
水平/垂直反射対称性を持つデータセットに対する畳み込みNN分類タスクへの本手法の適用も提案されている。
関連論文リスト
- The Empirical Impact of Neural Parameter Symmetries, or Lack Thereof [50.49582712378289]
ニューラル・ネットワーク・アーキテクチャの導入により,ニューラル・パラメータ・対称性の影響について検討する。
我々は,パラメータ空間対称性を低減するために,標準的なニューラルネットワークを改良する2つの手法を開発した。
実験により,パラメータ対称性の経験的影響に関する興味深い観察がいくつか示された。
論文 参考訳(メタデータ) (2024-05-30T16:32:31Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
我々は「緩和された同注入」という新しい概念を導入する。
我々は、この緩和を同変多層パーセプトロン(E-MLP)に組み込む方法を示す。
対称性の破れの関連性は、様々な応用領域で議論される。
論文 参考訳(メタデータ) (2023-12-14T15:06:48Z) - Geometrical aspects of lattice gauge equivariant convolutional neural
networks [0.0]
格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)は、非アベリア格子ゲージ理論に適用可能な畳み込みニューラルネットワークの枠組みである。
論文 参考訳(メタデータ) (2023-03-20T20:49:08Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Oracle-Preserving Latent Flows [58.720142291102135]
我々はラベル付きデータセット全体にわたって複数の非自明な連続対称性を同時に発見するための方法論を開発する。
対称性変換と対応するジェネレータは、特別に構築された損失関数で訓練された完全連結ニューラルネットワークでモデル化される。
この研究における2つの新しい要素は、縮小次元の潜在空間の使用と、高次元のオラクルに関して不変な変換への一般化である。
論文 参考訳(メタデータ) (2023-02-02T00:13:32Z) - Interrelation of equivariant Gaussian processes and convolutional neural
networks [77.34726150561087]
現在、ニューラルネットワーク(NN)とガウス過程(GP)の関係に基づく機械学習(ML)には、かなり有望な新しい傾向がある。
本研究では、ベクトル値のニューロン活性化を持つ2次元ユークリッド群とそれに対応する独立に導入された同変ガウス過程(GP)との関係を確立する。
論文 参考訳(メタデータ) (2022-09-17T17:02:35Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
我々のモデルは、シミュレーションされた乱流領域と実世界のマルチストリームジェット流の両方において、対称性バイアスのないベースラインと過度に厳密な対称性を持つベースラインの両方より優れていることが判明した。
論文 参考訳(メタデータ) (2022-01-28T07:31:28Z) - Preserving gauge invariance in neural networks [0.0]
格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)
L-CNNは格子上のゲージ不変および同変関数の大きなクラスを表現することができることを示す。
論文 参考訳(メタデータ) (2021-12-21T14:08:12Z) - Lattice gauge symmetry in neural networks [0.0]
格子ゲージ同変畳み込みニューラルネットワーク(L-CNN)と呼ばれる新しいニューラルネットワークアーキテクチャについてレビューする。
我々は、ゲージ同変畳み込み層と双線型層を明示的に構築するために使用するゲージ同値の概念について議論する。
L-CNNと等価でないCNNの性能は、一見単純な非線形回帰タスクを用いて比較する。
論文 参考訳(メタデータ) (2021-11-08T11:20:11Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
メッシュ上の畳み込みを定義する一般的なアプローチは、それらをグラフとして解釈し、グラフ畳み込みネットワーク(GCN)を適用することである。
本稿では、GCNを一般化して異方性ゲージ同変カーネルを適用するGauge Equivariant Mesh CNNを提案する。
本実験は,従来のGCNおよび他の手法と比較して,提案手法の表現性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2020-03-11T17:21:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。