Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
- URL: http://arxiv.org/abs/2505.00316v1
- Date: Thu, 01 May 2025 05:30:38 GMT
- Title: Surrogate modeling of Cellular-Potts Agent-Based Models as a segmentation task using the U-Net neural network architecture
- Authors: Tien Comlekoglu, J. Quetzalcóatl Toledo-Marín, Tina Comlekoglu, Douglas W. DeSimone, Shayn M. Peirce, Geoffrey Fox, James A. Glazier,
- Abstract summary: We develop a convolutional neural network (CNN) surrogate model using a U-Net architecture.<n>We use this model to accelerate the evaluation of a mechanistic Cellular-Potts model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Cellular-Potts model is a powerful and ubiquitous framework for developing computational models for simulating complex multicellular biological systems. Cellular-Potts models (CPMs) are often computationally expensive due to the explicit modeling of interactions among large numbers of individual model agents and diffusive fields described by partial differential equations (PDEs). In this work, we develop a convolutional neural network (CNN) surrogate model using a U-Net architecture that accounts for periodic boundary conditions. We use this model to accelerate the evaluation of a mechanistic CPM previously used to investigate \textit{in vitro} vasculogenesis. The surrogate model was trained to predict 100 computational steps ahead (Monte-Carlo steps, MCS), accelerating simulation evaluations by a factor of 590 times compared to CPM code execution. Over multiple recursive evaluations, our model effectively captures the emergent behaviors demonstrated by the original Cellular-Potts model of such as vessel sprouting, extension and anastomosis, and contraction of vascular lacunae. This approach demonstrates the potential for deep learning to serve as efficient surrogate models for CPM simulations, enabling faster evaluation of computationally expensive CPM of biological processes at greater spatial and temporal scales.
Related papers
- Learning to Simulate: Generative Metamodeling via Quantile Regression [2.0613075946076904]
Traditional metamodeling techniques learn relationships between simulator inputs and a single output summary statistic.<n>We propose a new concept: generative metamodeling.<n>Generative metamodels enable rapid generation of numerous random outputs upon input specification.
arXiv Detail & Related papers (2023-11-29T16:46:24Z) - Navigating protein landscapes with a machine-learned transferable
coarse-grained model [29.252004942896875]
coarse-grained (CG) model with similar prediction performance has been a long-standing challenge.
We develop a bottom-up CG force field with chemical transferability, which can be used for extrapolative molecular dynamics on new sequences.
We demonstrate that the model successfully predicts folded structures, intermediates, metastable folded and unfolded basins, and the fluctuations of intrinsically disordered proteins.
arXiv Detail & Related papers (2023-10-27T17:10:23Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Abstraction of Markov Population Dynamics via Generative Adversarial
Nets [2.1485350418225244]
A strategy to reduce computational load is to abstract the population model, replacing it with a simpler model, faster to simulate.
Here we pursue this idea, building on previous works and constructing a generator capable of producing trajectories in continuous space and discrete time.
This generator is learned automatically from simulations of the original model in a Generative Adversarial setting.
arXiv Detail & Related papers (2021-06-24T12:57:49Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Using Machine Learning to Emulate Agent-Based Simulations [0.0]
We evaluate the performance of multiple machine-learning methods as statistical emulators for use in the analysis of agent-based models (ABMs)
We propose that agent-based modelling would benefit from using machine-learning methods for emulation, as this can facilitate more robust sensitivity analyses for the models.
arXiv Detail & Related papers (2020-05-05T11:48:36Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.