Chiral Quantum Network with Giant Atoms
- URL: http://arxiv.org/abs/2106.13187v3
- Date: Tue, 10 May 2022 01:45:32 GMT
- Title: Chiral Quantum Network with Giant Atoms
- Authors: Xin Wang and Hong-rong Li
- Abstract summary: In superconducting quantum circuits (SQCs), chiral routing quantum information is often realized with the ferrite circulators.
We propose a novel method to realize chiral quantum networks by exploiting giant atom effects in SQC platforms.
- Score: 7.33811357166334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In superconducting quantum circuits (SQCs), chiral routing quantum
information is often realized with the ferrite circulators, which are usually
bulky, lossy and require strong magnetic fields. To overcome those problems, we
propose a novel method to realize chiral quantum networks by exploiting giant
atom effects in SQC platforms. By assuming each coupling point being modulated
with time, the interaction becomes momentum-dependent, and giant atoms will
chirally emit photons due to interference effects. The chiral factor can
approach 1, and both the emission direction and rate can be freely tuned by the
modulating signals. We demonstrate that a high-fidelity state transfer between
remote giant atoms can be realized. Our proposal can be integrated on the
superconducting chip easily, and has the potential to work as a tunable toolbox
for quantum information processing in future chiral quantum networks.
Related papers
- Hyperbolic Quantum Processor [0.0]
We show that long-range qubit entanglement can be achieved when qubit interactions are mediated by optical polariton waves in a hyperbolic material.
The resulting quantum gate fidelity that exceeds 99%, can be achieved with the use of qubits based on well known deep donors in silicon.
arXiv Detail & Related papers (2024-12-18T17:48:21Z) - Strong coupling of a superconducting flux qubit to single bismuth donors [0.0]
Single bismuth donors can coherently transfer their quantum information to a superconducting flux qubit.
This superconducting device allows to connect distant spins on-demand with little impact on their coherent behavior.
arXiv Detail & Related papers (2024-11-05T06:54:09Z) - Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Flying Spin Qubits in Quantum Dot Arrays Driven by Spin-Orbit Interaction [0.0]
Hole spin qubits, owing to their intrinsic spin-orbit interaction (SOI), promise fast quantum operations.
We investigate flying spin qubits mediated by SOI, using shortcuts to adiabaticity protocols.
We show that electric field manipulation allows dynamical control of the SOI, enabling simultaneously the implementation of quantum gates.
arXiv Detail & Related papers (2023-12-07T19:00:02Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Simulation of interaction-induced chiral topological dynamics on a
digital quantum computer [3.205614282399206]
Chiral edge states are sought-after as paradigmatic topological states relevant to quantum information processing and electron transport.
We demonstrate chiral topological propagation that is induced by suitably designed interactions, instead of flux or spin-orbit coupling.
By taking advantage of the quantum nature of the platform, we circumvented difficulties from the limited qubit number and gate fidelity in present-day noisy intermediate-scale quantum (NISQ)-era quantum computers.
arXiv Detail & Related papers (2022-07-28T18:00:29Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Robust quantum-network memory based on spin qubits in isotopically
engineered diamond [0.0]
We show that a single 13C spin in isotopically engineered diamond offers a long-lived quantum memory that is robust to the optical link operation of an NV centre.
Our results pave the way for test-bed quantum networks capable of investigating complex algorithms and error correction.
arXiv Detail & Related papers (2021-11-18T16:13:45Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Generating Spatially Entangled Itinerant Photons with Waveguide Quantum
Electrodynamics [43.53795072498062]
In this work, we demonstrate the deterministic generation of such photons using superconducting transmon qubits that are directly coupled to a waveguide.
We generate two-photon N00N states and show that the state and spatial entanglement of the emitted photons are tunable via the qubit frequencies.
arXiv Detail & Related papers (2020-03-16T16:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.