論文の概要: When Differential Privacy Meets Interpretability: A Case Study
- arxiv url: http://arxiv.org/abs/2106.13203v1
- Date: Thu, 24 Jun 2021 17:32:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-25 17:17:10.239615
- Title: When Differential Privacy Meets Interpretability: A Case Study
- Title(参考訳): ディファレンシャルプライバシが解釈可能性を満たす場合--ケーススタディ
- Authors: Rakshit Naidu, Aman Priyanshu, Aadith Kumar, Sasikanth Kotti, Haofan
Wang, Fatemehsadat Mireshghallah
- Abstract要約: 医用画像や診断などのタスクにおけるディープニューラルネットワーク(DNN)の差分プライベートトレーニングの重要性が高まっている。
本稿では,DPトレーニングがDNN,特に医療画像への応用に与える影響について,APTOSデータセット上で広範囲に研究することを提案する。
- 参考スコア(独自算出の注目度): 2.0796717061432006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the increase in the use of personal data for training Deep Neural
Networks (DNNs) in tasks such as medical imaging and diagnosis, differentially
private training of DNNs is surging in importance and there is a huge body of
work focusing on providing better privacy-utility trade-off. However, little
attention is given to the interpretability of these models, and how the
application of DP affects the quality of interpretations. We propose an
extensive study into the effects of DP training on DNNs, especially on medical
imaging applications, on the APTOS dataset.
- Abstract(参考訳): 医療画像や診断などのタスクにおけるDeep Neural Networks(DNN)のトレーニングにおける個人データの利用の増加を踏まえ、DNNの差分プライベートトレーニングの重要性が高まっている。
しかし,これらのモデルの解釈可能性やDPの適用が解釈の質に与える影響についてはほとんど注目されていない。
本稿では,DPトレーニングがDNN,特に医療画像への応用に与える影響について,APTOSデータセット上で広範囲に研究する。
関連論文リスト
- Differential privacy for protecting patient data in speech disorder detection using deep learning [11.01272267983849]
本研究は,ディファレンシャルプライバシ(DP)が病的音声データに与える影響を初めて調べたものである。
プライバシー予算7.51のDPを用いたトレーニングでは,最大精度が3.85%低下した。
本研究は,スペイン語を話すパーキンソン病患者の小さなデータセットに対するアプローチを一般化するために検証した。
論文 参考訳(メタデータ) (2024-09-27T18:25:54Z) - Expert-Adaptive Medical Image Segmentation [1.3428344011390778]
ディープニューラルネットワーク(DNN)に基づく主流医療画像分割手法
医学領域では、異なる専門家によって生成されたアノテーションは本質的に区別できる。
本研究では,マルチエキスパートアノテーション,マルチタスクDNNモデルトレーニング,軽量モデル微調整を特徴とする,カスタマイズされたエキスパート適応手法の評価を行う。
論文 参考訳(メタデータ) (2024-02-11T23:39:42Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Private, fair and accurate: Training large-scale, privacy-preserving AI models in medical imaging [47.99192239793597]
我々は,AIモデルのプライバシ保護トレーニングが,非プライベートトレーニングと比較して精度と公平性に与える影響を評価した。
我々の研究は、実際の臨床データセットの困難な現実的な状況下では、診断深層学習モデルのプライバシー保護トレーニングは、優れた診断精度と公正さで可能であることを示しています。
論文 参考訳(メタデータ) (2023-02-03T09:49:13Z) - Investigating the Predictive Reproducibility of Federated Graph Neural
Networks using Medical Datasets [0.0]
本稿では、医用画像と脳接続データセットの分類に応用したフェデレーションGNNモデルの適用について検討する。
我々は,これらの医学的学習課題において,連合学習がGNNモデルの精度と精度を高めることを示した。
論文 参考訳(メタデータ) (2022-09-13T14:32:03Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
本稿では,ニューラルネットワークの本質的特性を活用し,生存分析モデルの訓練過程を関連づける。
小さな医療データセットと少数のデータセンターの現実的な設定では、このノイズはモデルを収束させるのが難しくなります。
DPFed-post は,私的フェデレート学習方式に後処理の段階を追加する。
論文 参考訳(メタデータ) (2022-02-08T10:03:24Z) - NeuralDP Differentially private neural networks by design [61.675604648670095]
ニューラルネットワーク内のいくつかの層の活性化を民営化する手法であるNeuralDPを提案する。
本研究では,DP-SGDと比較して,プライバシーとユーティリティのトレードオフを大幅に改善した2つのデータセットを実験的に検証した。
論文 参考訳(メタデータ) (2021-07-30T12:40:19Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - Chasing Your Long Tails: Differentially Private Prediction in Health
Care Settings [34.26542589537452]
差分プライベート(DP)学習の方法は、プライバシ保証付きモデルを学習するための汎用的なアプローチを提供する。
DP学習の現代的な手法は、情報に過度にユニークなと判断される情報を検閲するメカニズムを通じて、プライバシーを確保する。
我々はDP学習に最先端の手法を用いて,臨床予測タスクにおけるプライバシ保護モデルを訓練する。
論文 参考訳(メタデータ) (2020-10-13T19:56:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。