論文の概要: Investigating the Predictive Reproducibility of Federated Graph Neural
Networks using Medical Datasets
- arxiv url: http://arxiv.org/abs/2209.06032v1
- Date: Tue, 13 Sep 2022 14:32:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 13:04:09.629891
- Title: Investigating the Predictive Reproducibility of Federated Graph Neural
Networks using Medical Datasets
- Title(参考訳): 医療データを用いたフェデレーショングラフニューラルネットワークの予測再現性の検討
- Authors: Mehmet Yigit Balik, Arwa Rekik and Islem Rekik
- Abstract要約: 本稿では、医用画像と脳接続データセットの分類に応用したフェデレーションGNNモデルの適用について検討する。
我々は,これらの医学的学習課題において,連合学習がGNNモデルの精度と精度を高めることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks (GNNs) have achieved extraordinary enhancements in
various areas including the fields medical imaging and network neuroscience
where they displayed a high accuracy in diagnosing challenging neurological
disorders such as autism. In the face of medical data scarcity and
high-privacy, training such data-hungry models remains challenging. Federated
learning brings an efficient solution to this issue by allowing to train models
on multiple datasets, collected independently by different hospitals, in fully
data-preserving manner. Although both state-of-the-art GNNs and federated
learning techniques focus on boosting classification accuracy, they overlook a
critical unsolved problem: investigating the reproducibility of the most
discriminative biomarkers (i.e., features) selected by the GNN models within a
federated learning paradigm. Quantifying the reproducibility of a predictive
medical model against perturbations of training and testing data distributions
presents one of the biggest hurdles to overcome in developing translational
clinical applications. To the best of our knowledge, this presents the first
work investigating the reproducibility of federated GNN models with application
to classifying medical imaging and brain connectivity datasets. We evaluated
our framework using various GNN models trained on medical imaging and
connectomic datasets. More importantly, we showed that federated learning
boosts both the accuracy and reproducibility of GNN models in such medical
learning tasks. Our source code is available at
https://github.com/basiralab/reproducibleFedGNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、医学画像やネットワーク神経科学などの分野において、自閉症などの困難な神経疾患の診断において高い精度で進歩を遂げている。
医療データ不足と高プライバシーに直面しながら、このようなデータ収集モデルのトレーニングは依然として困難である。
フェデレーション学習は、複数の病院が独立して収集した複数のデータセット上で、完全なデータ保存方法でモデルをトレーニングすることで、この問題に効率的な解決策をもたらす。
最先端のgnnとフェデレーション学習の技術は、どちらも分類精度の向上に重点を置いているが、重要な未解決問題である、gnnモデルによって選択された最も識別的なバイオマーカー(すなわち特徴)の再現性について、フェデレーション学習パラダイム内で見落としている。
トレーニングやデータ配布の摂動に対する予測医療モデルの再現性を定量化することは、翻訳臨床応用の開発において克服すべき最大のハードルの一つとなる。
本研究は,gnnモデルの再現性を調査する最初の研究であり,医療画像と脳結合データセットの分類への応用について述べる。
医用画像とコネクトロミックデータセットを訓練した各種GNNモデルを用いて,本フレームワークの評価を行った。
さらに, 連携学習は, 医療学習におけるGNNモデルの精度と再現性を向上させることを示した。
ソースコードはhttps://github.com/basiralab/reproduciblefedgnnで入手できます。
関連論文リスト
- Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
既存のディープラーニングソリューションには,3つの大きな制限がある。
我々はフェデレートグラフベースの多軌道進化ネットワークであるFedGmTE-Net++を紹介する。
フェデレーションの力を利用して、限られたデータセットを持つ多種多様な病院の地域学習を集約する。
論文 参考訳(メタデータ) (2024-01-01T10:20:01Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Benchmarking Graph Neural Networks for FMRI analysis [0.0]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するための強力なツールとして登場した。
うつ病と自閉症スペクトラム障害の診断における5つのGNNアーキテクチャの性能について検討・評価を行った。
機能的脳データのための最適グラフ構造を作成することは、GNNの性能を阻害する主要なボトルネックである。
論文 参考訳(メタデータ) (2022-11-16T14:16:54Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
ニューロイメージングにおける形状分類のための幾何学的深層学習の現状について概説する。
ノード機能としてFPFHを使用することで,GNNの性能が大幅に向上し,アウト・オブ・ディストリビューションデータへの一般化が期待できる。
以上の結果から,アルツハイマー病の分類を応用し,臨床的に有意な課題を確定した。
論文 参考訳(メタデータ) (2022-10-29T19:03:01Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
我々は最近,サンプル共分散行列で動作する共分散ニューラルネットワーク(VNN)について検討した。
本稿では,大脳皮質厚みデータを用いた脳年齢推定におけるVNNの有用性を示す。
以上の結果から、VNNは脳年齢推定のためのマルチスケールおよびマルチサイト転送性を示すことが明らかとなった。
アルツハイマー病(AD)の脳年齢の文脈では,健常者に対してVNNを用いて予測される脳年齢がADに対して有意に上昇していることから,VNNの出力は解釈可能であることが示された。
論文 参考訳(メタデータ) (2022-10-28T18:58:34Z) - Improving the Level of Autism Discrimination through GraphRNN Link
Prediction [8.103074928419527]
本稿では,GraphRNNを用いて実脳ネットワークのエッジ分布を学習する後者の手法に基づく。
実験の結果,オリジナルデータと合成データの組み合わせはニューラルネットワークの識別を大幅に改善することがわかった。
論文 参考訳(メタデータ) (2022-02-19T06:50:32Z) - Quantifying the Reproducibility of Graph Neural Networks using
Multigraph Brain Data [0.0]
グラフニューラルネットワーク(GNN)は、コンピュータビジョン、コンピュータ支援診断、および関連分野におけるいくつかの問題に取り組む際に、前例のない増殖を目撃している。
これまでの研究では、モデルの精度の向上に焦点が当てられていたが、GNNによって特定される最も差別的な特徴を定量化することは、臨床応用における信頼性に関する懸念を生じさせる無傷の問題である。
異なるモデル間で共有される最も差別的な特徴(バイオマーカー)によるGNNアセスメントのためのフレームワークを初めて提案する。我々のフレームワークの健全性を確認するため、トレーニング戦略やトレーニング戦略などのさまざまな要因を取り入れている。
論文 参考訳(メタデータ) (2021-09-06T05:31:02Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。