論文の概要: Feature Grouping and Sparse Principal Component Analysis
- arxiv url: http://arxiv.org/abs/2106.13685v1
- Date: Fri, 25 Jun 2021 15:08:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 12:59:34.823112
- Title: Feature Grouping and Sparse Principal Component Analysis
- Title(参考訳): 特徴群とスパース主成分分析
- Authors: Haiyan Jiang, Shanshan Qin, Dejing Dou
- Abstract要約: Grouping and Sparse principal Analysis (SPCA) はデータ処理次元の削減に広く利用されている。
FGSPCAは、荷重が不均一な同種群に属することを許容し、空間性は特別な場合である。
- 参考スコア(独自算出の注目度): 23.657672812296518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse Principal Component Analysis (SPCA) is widely used in data processing
and dimension reduction; it uses the lasso to produce modified principal
components with sparse loadings for better interpretability. However, sparse
PCA never considers an additional grouping structure where the loadings share
similar coefficients (i.e., feature grouping), besides a special group with all
coefficients being zero (i.e., feature selection). In this paper, we propose a
novel method called Feature Grouping and Sparse Principal Component Analysis
(FGSPCA) which allows the loadings to belong to disjoint homogeneous groups,
with sparsity as a special case. The proposed FGSPCA is a subspace learning
method designed to simultaneously perform grouping pursuit and feature
selection, by imposing a non-convex regularization with naturally adjustable
sparsity and grouping effect. To solve the resulting non-convex optimization
problem, we propose an alternating algorithm that incorporates the
difference-of-convex programming, augmented Lagrange and coordinate descent
methods. Additionally, the experimental results on real data sets show that the
proposed FGSPCA benefits from the grouping effect compared with methods without
grouping effect.
- Abstract(参考訳): スパース主成分分析 (sparse principal component analysis, spca) はデータ処理や次元縮小に広く使われている。
しかし、スパースPCAは、すべての係数が 0 である特別な群(つまり、特徴選択)に加えて、負荷が類似した係数(すなわち、特徴群)を共有する追加のグループ構造を決して考慮しない。
本稿では,FGSPCA(Feature Grouping and Sparse principal Component Analysis)と呼ばれる新しい手法を提案する。
提案したFGSPCAは,非凸正規化を自然に調整可能な間隔とグループ化効果を付与することにより,グループ探索と特徴選択を同時に行うためのサブスペース学習手法である。
結果として得られる非凸最適化問題を解決するために、差分凸プログラミング、拡張ラグランジュおよび座標降下法を組み込んだ交互アルゴリズムを提案する。
さらに, 実データを用いた実験結果から, 提案したFGSPCAはグループ化効果のない手法と比較してグループ化効果の恩恵を受けることが示された。
関連論文リスト
- A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - Achieving Sample and Computational Efficient Reinforcement Learning by
Action Space Reduction via Grouping [7.691755449724638]
強化学習は、しばしば高次元空間における状態や行動の指数的な成長に対処する必要がある。
我々は、動作に類似したMDPの固有の構造を学び、性能劣化とサンプル/計算の複雑さを適切にバランスさせる。
論文 参考訳(メタデータ) (2023-06-22T15:40:10Z) - Sparse-group boosting -- Unbiased group and variable selection [0.0]
群内空間と群間空間は混合パラメータによって制御可能であることを示す。
シミュレーション,遺伝子データおよび農業データを用いて,この推定装置の有効性と予測的競争性を示す。
論文 参考訳(メタデータ) (2022-06-13T17:44:16Z) - Exclusive Group Lasso for Structured Variable Selection [10.86544864007391]
構造化変数選択問題を考える。
合成ノルムは、そのような排他的グループ空間パターンを促進するために適切に設計することができる。
構造原子を推定された支持体に含めて解を構築する能動集合アルゴリズムが提案されている。
論文 参考訳(メタデータ) (2021-08-23T16:55:13Z) - Robust Matrix Factorization with Grouping Effect [28.35582493230616]
グループ化効果を用いた行列分解法(GRMF)を提案する。
提案した GRMF は、事前の知識なしに、MF におけるグループ構造と疎性を学ぶことができる。
外れ値と汚染ノイズを持つ実世界のデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-06-25T15:03:52Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
治療効果のサブグループ分析は、医療から公共政策、レコメンデーターシステムへの応用において重要な役割を担っている。
サブグループ分析の現在の手法のほとんどは、個別化処理効果(ITE)を推定するための特定のアルゴリズムから始まる。
本稿では、これらの弱点に対処する新しい部分群解析法R2Pを開発する。
論文 参考訳(メタデータ) (2020-06-14T14:50:02Z) - Robust Grouped Variable Selection Using Distributionally Robust
Optimization [11.383869751239166]
摂動下での群付き変数選択のための不確実性セットを用いた分布ロバスト最適化(DRO)の定式化を提案する。
我々は,サンプル外損失と推定バイアスの確率的境界を証明し,推定器の群化効果を確立する。
我々の定式化は,群レベルでの空間性を促進する解釈可能で同相なモデルを生成することを示す。
論文 参考訳(メタデータ) (2020-06-10T22:32:52Z) - Repulsive Mixture Models of Exponential Family PCA for Clustering [127.90219303669006]
指数関数型家族主成分分析(EPCA)の混合拡張は、従来のEPCAよりもデータ分布に関する構造情報を符号化するように設計された。
従来のEPCAの混合は、モデルの冗長性、すなわち混合成分間の重なりが問題であり、データクラスタリングの曖昧さを引き起こす可能性がある。
本稿では, 混合成分間での反発性増感前処理を導入し, ベイズ式に分散EPCA混合(DEPCAM)モデルを開発した。
論文 参考訳(メタデータ) (2020-04-07T04:07:29Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
我々は,群不変特徴ベクトルが線形分類器を学習する際に十分な識別情報を含んでいることを証明した。
主成分分析やk平均クラスタリングにおいて,グループアクションを明示的に考慮する新たな特徴モデルを提案する。
論文 参考訳(メタデータ) (2019-06-05T07:15:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。