論文の概要: Assessing the Lockdown Effects on Air Quality during COVID-19 Era
- arxiv url: http://arxiv.org/abs/2106.13750v1
- Date: Fri, 25 Jun 2021 16:39:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-28 14:27:46.238492
- Title: Assessing the Lockdown Effects on Air Quality during COVID-19 Era
- Title(参考訳): 新型コロナウイルス対策におけるロックダウン効果の評価
- Authors: Ioannis Kavouras, Eftychios Protopapadakis, Maria Kaselimia, Emmanuel
Sardis, Nikolaos Doulamis
- Abstract要約: 特に、一酸化炭素(CO)、オゾン(O3)、二酸化窒素(NO2)、二酸化硫黄(SO2)などの特定の汚染ガスに対する濃度効果を強調した。
ヨーロッパ4都市(Athens, Gladsaxe, Lodz, Rome)に着目した大気質に及ぼすロックダウンの影響評価
雇用予防対策のレベルは、オックスフォード市政府対応トラッカーを用いて採用されている。
その結果, 汚染ガスの挙動を予測するモデルの構築が可能であることが示唆された。
- 参考スコア(独自算出の注目度): 8.733926566837676
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we investigate the short-term variations in air quality
emissions, attributed to the prevention measures, applied in different cities,
to mitigate the COVID-19 spread. In particular, we emphasize on the
concentration effects regarding specific pollutant gases, such as carbon
monoxide (CO), ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2).
The assessment of the impact of lockdown on air quality focused on four
European Cities (Athens, Gladsaxe, Lodz and Rome). Available data on pollutant
factors were obtained using global satellite observations. The level of the
employed prevention measures is employed using the Oxford COVID-19 Government
Response Tracker. The second part of the analysis employed a variety of machine
learning tools, utilized for estimating the concentration of each pollutant,
two days ahead. The results showed that a weak to moderate correlation exists
between the corresponding measures and the pollutant factors and that it is
possible to create models which can predict the behaviour of the pollutant
gases under daily human activities.
- Abstract(参考訳): 本研究は、新型コロナウイルスの感染拡大を抑制するため、各都市で適用された予防策による大気汚染の短期的変動について検討する。
特に、一酸化炭素(CO)、オゾン(O3)、二酸化窒素(NO2)、二酸化硫黄(SO2)などの特定の汚染ガスに対する濃度効果を強調した。
ロックダウンの影響の評価は4つのヨーロッパ都市(Athens, Gladsaxe, Lodz, Rome)に焦点を当てた。
地球規模の衛星観測により,汚染物質に関するデータを得た。
雇用予防対策のレベルは、オックスフォード市政府対応トラッカーを用いて採用されている。
分析の第2部では、さまざまな機械学習ツールを使用して、各汚染物質の濃度を2日前に推定した。
その結果, 対応する指標と汚染要因との間には, 弱ないし中程度の相関関係が存在し, 日常生活における汚染物質ガスの挙動を予測できるモデルを作成することが可能であった。
関連論文リスト
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Autonomous Detection of Methane Emissions in Multispectral Satellite
Data Using Deep Learning [73.01013149014865]
メタンは最も強力な温室効果ガスの1つである。
現在のメタン放出モニタリング技術は、近似的な放出要因や自己報告に依存している。
深層学習法は、Sentinel-2衛星マルチスペクトルデータにおけるメタン漏れの自動検出に利用することができる。
論文 参考訳(メタデータ) (2023-08-21T19:36:50Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
機械学習(ML)は、モデルトレーニングプロセス中に計算を実行するためにエネルギーを使用する必要がある。
このエネルギーの生成には、使用量やエネルギー源によって、温室効果ガスの排出という観点からの環境コストが伴う。
本稿では,自然言語処理とコンピュータビジョンにおいて,95のMLモデルの炭素排出量の時間的および異なるタスクに関する調査を行う。
論文 参考訳(メタデータ) (2023-02-16T18:35:00Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Using Machine Learning to Predict Air Quality Index in New Delhi [0.0]
各種汚染物質のレベルと大気質指標の予測には,SVRモデルを用いる。
このモデルは、二酸化炭素、一酸化炭素、二酸化窒素、粒子状物質2.5、地上レベルのオゾンなどの様々な汚染物質を、精度93.4%で予測する。
論文 参考訳(メタデータ) (2021-12-10T00:20:05Z) - Effects of a nuclear disturbed environment on a quantum free space
optical link [52.77024349608834]
本書は, 地上・衛星・受信システムの信号減衰に及ぼす核分裂大気環境の影響について検討する。
上昇する核雲とその後に輸送された破片を通して伝達される信号の減衰は、気候学的に10kt、100kt、および1山の表面レベルでの爆発をモデル化する。
論文 参考訳(メタデータ) (2021-08-10T19:25:54Z) - Evaluation of Time Series Forecasting Models for Estimation of PM2.5
Levels in Air [0.0]
この研究では、環境中のPM2.5濃度を推定するために、ARIMA、FBProphet、LSTM、1D CNNなどのディープラーニングモデルを採用する。
予測結果から,すべての手法が平均根平均二乗誤差で比較結果を与えることがわかった。
論文 参考訳(メタデータ) (2021-04-07T16:24:39Z) - Interpretable and Transferable Models to Understand the Impact of
Lockdown Measures on Local Air Quality [5.273501657421094]
新型コロナウイルス(COVID-19)関連のロックダウン対策は、経済活動や交通の変化が環境空気の質に与える影響を理解するユニークな機会を提供する。
地上の大気汚染モニタリングステーションからの測定値を用いて,ロックダウン期間における汚染の低減を推定する。
我々は,スイスと中国における大気汚染測定所のデータについて,現状の成果が得られたことを示す。
論文 参考訳(メタデータ) (2020-11-19T23:09:30Z) - SOCAIRE: Forecasting and Monitoring Urban Air Quality in Madrid [0.0]
本稿では,ニューラルネットワーク,統計モデル,ネストモデルに基づく運用ツールであるSOCAIREを提案する。
大気汚染の過去の濃度、人間の活動、数値汚染の推定、数値天気予報など、大気汚染に影響を及ぼす可能性のある各コンポーネントをモデル化することに焦点を当てている。
このツールは現在マドリードで運用されており、48時間にわたって毎日の空気の質を予測している。
論文 参考訳(メタデータ) (2020-11-19T09:39:10Z) - Averaging Atmospheric Gas Concentration Data using Wasserstein
Barycenters [68.978070616775]
ハイパースペクトル衛星画像は、世界中の温室効果ガス濃度を毎日報告している。
気象データと組み合わさったワッサーシュタイン・バリセンタを用いて, ガス濃度データセットの平均化と, 質量集中性の向上を提案する。
論文 参考訳(メタデータ) (2020-10-06T14:31:25Z) - HazeDose: Design and Analysis of a Personal Air Pollution Inhaled Dose
Estimation System using Wearable Sensors [6.284628903370058]
我々はこのパラダイムを、個人の大気汚染をパーソナライズするHazeDoseシステムに拡張する。
ユーザはモバイルアプリケーションを通じて、パーソナライズされた大気汚染の暴露情報を視覚化できる。
1つのアルゴリズムは、代替ルートシナリオの実行時間と量削減のバランスをとるために導入された。
論文 参考訳(メタデータ) (2020-05-28T02:35:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。