論文の概要: Semi-Supervised Raw-to-Raw Mapping
- arxiv url: http://arxiv.org/abs/2106.13883v1
- Date: Fri, 25 Jun 2021 21:01:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 17:54:39.145614
- Title: Semi-Supervised Raw-to-Raw Mapping
- Title(参考訳): 半監督Raw-to-Rawマッピング
- Authors: Mahmoud Afifi and Abdullah Abuolaim
- Abstract要約: カメラセンサーの生RGB色は、異なるセンサーのメーカーやモデル間のスペクトル感度の違いによって異なる。
本稿では,各カメラ装置が捉えた画像とペア画像の小さなセットで訓練した半教師付き生-生-生のマッピング手法を提案する。
- 参考スコア(独自算出の注目度): 19.783856963405754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The raw-RGB colors of a camera sensor vary due to the spectral sensitivity
differences across different sensor makes and models. This paper focuses on the
task of mapping between different sensor raw-RGB color spaces. Prior work
addressed this problem using a pairwise calibration to achieve accurate color
mapping. Although being accurate, this approach is less practical as it
requires: (1) capturing pair of images by both camera devices with a color
calibration object placed in each new scene; (2) accurate image alignment or
manual annotation of the color calibration object. This paper aims to tackle
color mapping in the raw space through a more practical setup. Specifically, we
present a semi-supervised raw-to-raw mapping method trained on a small set of
paired images alongside an unpaired set of images captured by each camera
device. Through extensive experiments, we show that our method achieves better
results compared to other domain adaptation alternatives in addition to the
single-calibration solution. We have generated a new dataset of raw images from
two different smartphone cameras as part of this effort. Our dataset includes
unpaired and paired sets for our semi-supervised training and evaluation.
- Abstract(参考訳): カメラセンサーの生RGB色は、異なるセンサーのメーカーやモデル間のスペクトル感度の違いによって異なる。
本稿では,異なるセンサRGB色空間間のマッピング作業に焦点をあてる。
以前の研究は、正確な色マッピングを実現するためにペアワイズキャリブレーションを使用してこの問題に対処した。
精度は高いものの、(1)カラーキャリブレーション対象を各シーンに配置した両カメラ装置で一対の画像を撮影する、(2)カラーキャリブレーション対象の正確な画像アライメントまたは手動アノテーション。
本稿では,より実用的な構成で生空間のカラーマッピングを実現することを目的とする。
具体的には,各カメラ装置で撮影された非ペア画像群とペア画像群で訓練された半教師付きraw-to-rawマッピング法を提案する。
実験により,本手法は単一校正法に加えて,他の領域適応法よりも優れた結果が得られることを示す。
この取り組みの一環として、2つの異なるスマートフォンカメラから生画像の新しいデータセットを作成しました。
データセットには、セミ教師付きトレーニングと評価のためのペアとペアのセットが含まれています。
関連論文リスト
- SRPose: Two-view Relative Pose Estimation with Sparse Keypoints [51.49105161103385]
SRPoseは、カメラ・トゥ・ワールドおよびオブジェクト・トゥ・カメラシナリオにおける2ビュー相対ポーズ推定のためのスパースキーポイントベースのフレームワークである。
精度と速度の点で最先端の手法と比較して、競争力や優れた性能を達成する。
さまざまな画像サイズやカメラ固有の機能に対して堅牢であり、低コンピューティングリソースでデプロイすることができる。
論文 参考訳(メタデータ) (2024-07-11T05:46:35Z) - Training Neural Networks on RAW and HDR Images for Restoration Tasks [59.41340420564656]
本研究は,3つの画像復元アプリケーション(デノイング,デブロアリング,シングルイメージ超解像)に対するアプローチを検証した。
その結果、ニューラルネットワークは、表示色空間で表現されるHDRおよびRAW画像において、かなりよく訓練されていることが示唆された。
トレーニング戦略へのこの小さな変更は、最大10~15dBのパフォーマンスを大幅に向上させることができます。
論文 参考訳(メタデータ) (2023-12-06T17:47:16Z) - Learning Enriched Illuminants for Cross and Single Sensor Color
Constancy [182.4997117953705]
ネットワークをトレーニングするためのクロスセンサ自己教師型トレーニングを提案する。
センサに依存しない方法で人工発光体をランダムにサンプリングすることでネットワークを訓練する。
実験により、我々のクロスセンサモデルとシングルセンサーモデルは、他の最先端手法よりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2022-03-21T15:45:35Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
本稿では,スマートフォンが取得したRAW画像に基づいて,DSLRの品質画像を生成する訓練可能な画像信号処理フレームワークを提案する。
トレーニング画像ペア間の色ずれに対処するために、カラー条件ISPネットワークを使用し、各入力RAWと基準DSLR画像間の新しいパラメトリック色マッピングを最適化する。
論文 参考訳(メタデータ) (2022-03-20T20:13:59Z) - Colour alignment for relative colour constancy via non-standard
references [11.92389176996629]
相対色濃度は、多くの科学的イメージング応用に必須の要件である。
カメラ画像形成をブラックボックスとみなすカラーアライメントモデルを提案する。
カラーアライメントは、カメラ応答校正、応答線形化、色マッチングという3段階のプロセスとして定式化される。
論文 参考訳(メタデータ) (2021-12-30T15:58:55Z) - Colored Point Cloud to Image Alignment [15.828285556159026]
そこで本研究では,カラーマッチングと幾何マッチングにより,色付き点雲を所定の色画像に整列する微分最適化手法を提案する。
カメラ画像と点雲の色との変換は、点雲の相対的な位置と一致した色とのマッチングを繰り返すことによって行う。
論文 参考訳(メタデータ) (2021-10-07T08:12:56Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
本稿では,画像アライメントとRAW-to-sRGBマッピングのための共同学習モデルを提案する。
実験の結果,本手法はZRRおよびSR-RAWデータセットの最先端に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2021-08-18T12:41:36Z) - Image color correction, enhancement, and editing [14.453616946103132]
画像信号処理装置(ISP)の立場から見た色補正問題について検討する。
特に,新しいカラーのカメラレンダリング画像の異なる実写版を生成するためのオートイメージ再キャプチャ手法を提案する。
論文 参考訳(メタデータ) (2021-07-28T01:14:12Z) - Illumination Estimation Challenge: experience of past two years [57.13714732760851]
第2回照明推定チャレンジ(IEC#2)を行った。
チャレンジには、一般的なもの、屋内のもの、照明が2つあり、それぞれ異なるシーンのパラメーターに焦点を当てていた。
他の主な特徴は、同じカメラセンサーモデルで撮影された画像の新しい大規模なデータセット(約5000)、各画像に付随する手動マークアップ、SpyderCubeキャリブレーションオブジェクトを使用して抽出されたさまざまな照明の下で多くの国で撮影されたシーンの多様なコンテンツ、IEC#1で使用されたCube+データセットからの画像のコンテストのようなマークアップです。
論文 参考訳(メタデータ) (2020-12-31T17:59:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。