論文の概要: A Cascade Dual-Decoder Model for Joint Entity and Relation Extraction
- arxiv url: http://arxiv.org/abs/2106.14163v2
- Date: Thu, 23 May 2024 11:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-26 22:01:37.575548
- Title: A Cascade Dual-Decoder Model for Joint Entity and Relation Extraction
- Title(参考訳): 連接エンティティと関係抽出のためのカスケードデュアルデコーダモデル
- Authors: Jian Cheng, Tian Zhang, Shuang Zhang, Huimin Ren, Guo Yu, Xiliang Zhang, Shangce Gao, Lianbo Ma,
- Abstract要約: 重なり合う三重項を抽出する効果的なカスケード二重復号器法を提案する。
我々のアプローチは単純であり、テキスト固有の関係デコーダと関係対応エンティティデコーダを含んでいる。
提案手法の一般化性を検証するために,実世界の露天採掘データセットと2つの公開データセットについて実験を行った。
- 参考スコア(独自算出の注目度): 18.66493402386152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In knowledge graph construction, a challenging issue is how to extract complex (e.g., overlapping) entities and relationships from a small amount of unstructured historical data. The traditional pipeline methods are to divide the extraction into two separate subtasks, which misses the potential interaction between the two subtasks and may lead to error propagation. In this work, we propose an effective cascade dual-decoder method to extract overlapping relational triples, which includes a text-specific relation decoder and a relation-corresponded entity decoder. Our approach is straightforward and it includes a text-specific relation decoder and a relation-corresponded entity decoder. The text-specific relation decoder detects relations from a sentence at the text level. That is, it does this according to the semantic information of the whole sentence. For each extracted relation, which is with trainable embedding, the relation-corresponded entity decoder detects the corresponding head and tail entities using a span-based tagging scheme. In this way, the overlapping triple problem can be tackled naturally. We conducted experiments on a real-world open-pit mine dataset and two public datasets to verify the method's generalizability. The experimental results demonstrate the effectiveness and competitiveness of our proposed method and achieve better F1 scores under strict evaluation metrics. Our implementation is available at https://github.com/prastunlp/DualDec.
- Abstract(参考訳): 知識グラフ構築において、挑戦的な問題は、少量の構造化されていない歴史的データから複雑な(例えば重なり合う)実体や関係を抽出する方法である。
従来のパイプライン方式では、抽出を2つのサブタスクに分割することで、2つのサブタスク間の潜在的な相互作用を見逃し、エラーの伝播につながる可能性がある。
本研究では,テキスト固有の関係デコーダと関係対応エンティティデコーダを含む重なり合う関係三重項を抽出する効果的なカスケード二重デコーダ法を提案する。
我々のアプローチは単純であり、テキスト固有の関係デコーダと関係対応エンティティデコーダを含んでいる。
テキスト固有関係復号器は、テキストレベルで文から関係を検出する。
つまり、文全体の意味情報に従ってこれを行う。
トレーニング可能な埋め込みを伴う抽出された関係について、関係対応エンティティデコーダは、スパンベースのタグ付け方式を用いて対応する頭と尾のエンティティを検出する。
このように、重なり合う三重問題に自然に取り組むことができる。
提案手法の一般化性を検証するために,実世界の露天採掘データセットと2つの公開データセットについて実験を行った。
実験の結果,提案手法の有効性と競争性を示し,厳密な評価基準の下でF1スコアを向上した。
実装はhttps://github.com/prastunlp/DualDec.comで公開しています。
関連論文リスト
- Relation Rectification in Diffusion Model [64.84686527988809]
本稿では,最初に生成できない関係を正確に表現するためにモデルを洗練することを目的とした,リレーション・リクティフィケーション(Relation Rectification)と呼ばれる新しいタスクを紹介する。
異種グラフ畳み込みネットワーク(HGCN)を利用した革新的な解を提案する。
軽量HGCNは、テキストエンコーダによって生成されたテキスト埋め込みを調整し、埋め込み空間におけるテキスト関係の正確な反映を保証する。
論文 参考訳(メタデータ) (2024-03-29T15:54:36Z) - Mutually Guided Few-shot Learning for Relational Triple Extraction [10.539566491939844]
三重抽出(MG-FTE)のための相互指導型Few-shot学習フレームワーク
本手法は,関係を分類するエンティティ誘導型リレーショナルデコーダと,エンティティを抽出するプロトデコーダとから構成される。
FewRel 1.0(単一ドメイン)では12.6F1スコア、FewRel 2.0(クロスドメイン)では20.5F1スコアで、多くの最先端手法よりも優れています。
論文 参考訳(メタデータ) (2023-06-23T06:15:54Z) - Relational Sentence Embedding for Flexible Semantic Matching [86.21393054423355]
文埋め込みの可能性を明らかにするための新しいパラダイムとして,文埋め込み(Sentence Embedding, RSE)を提案する。
RSEは文関係のモデル化に有効で柔軟性があり、一連の最先端の埋め込み手法より優れている。
論文 参考訳(メタデータ) (2022-12-17T05:25:17Z) - UniRel: Unified Representation and Interaction for Joint Relational
Triple Extraction [29.15806644012706]
我々はUniRelを提案し、エンティティとリレーションのリッチな相関を捉えることの課題に対処する。
具体的には、エンティティとリレーションシップの表現を、リレーショナルな自然言語シーケンスで共同で符号化することで統一する。
2つの一般的な3重抽出データセットに関する包括的実験により、UniRelはより効率的な計算効率を示す。
論文 参考訳(メタデータ) (2022-11-16T16:53:13Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
ゼロショット関係トリプルト抽出(ZeroRTE)のタスク設定について紹介する。
入力文が与えられた後、抽出された各三重項は、トレーニング段階で関係ラベルが見えないヘッドエンティティ、リレーションラベル、テールエンティティから構成される。
本稿では、言語モデルに構造化テキストを生成するよう促すことで、関係例を合成する。
論文 参考訳(メタデータ) (2022-03-17T05:55:14Z) - OneRel:Joint Entity and Relation Extraction with One Module in One Step [42.576188878294886]
統合エンティティと関係抽出は自然言語処理と知識グラフ構築において不可欠な課題である。
そこで我々は, 結合抽出を細粒度三重分類問題として用いた, OneRel という新しい結合実体と関係抽出モデルを提案する。
論文 参考訳(メタデータ) (2022-03-10T15:09:59Z) - A Trigger-Sense Memory Flow Framework for Joint Entity and Relation
Extraction [5.059120569845976]
結合エンティティと関係抽出のためのTriMF(Trigger-Sense Memory Flow Framework)を提案する。
エンティティ認識と関係抽出タスクで学習したカテゴリ表現を記憶するためのメモリモジュールを構築する。
また,エンティティ認識と関係抽出の双方向インタラクションを強化するために,多レベルメモリフロー注目機構を設計する。
論文 参考訳(メタデータ) (2021-01-25T16:24:04Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event- Extractは、トリガとエンティティのタグからなるタグセットを備えたシーケンスからシーケンスまでのラベリングタスクである。
トリガやエンティティの抽出を交互に監督するクロススーパーバイザードメカニズム(CSM)を提案する。
我々の手法は、エンティティとトリガー抽出の両方において最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-10-13T11:51:17Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
複雑な知識グラフにおける実体と関係の表現を学習するためにHittを提案する。
実験結果から,Hittは複数リンク予測において最先端の新たな結果が得られることがわかった。
さらに,HittをBERTに統合する簡単なアプローチを提案し,その効果を2つのFreebaseファクトイド対応データセットで示す。
論文 参考訳(メタデータ) (2020-08-28T18:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。