論文の概要: Memory Guided Road Detection
- arxiv url: http://arxiv.org/abs/2106.14184v1
- Date: Sun, 27 Jun 2021 10:17:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 18:06:31.609213
- Title: Memory Guided Road Detection
- Title(参考訳): メモリガイドによる道路検出
- Authors: Praveen Venkatesh, Rwik Rana, Varun Jain
- Abstract要約: 本研究では,道路検出の高速化とロバスト性を高めるアーキテクチャを提案する。
従来のフレームのギストを利用して、ネットワークをトレーニングし、現在の道路をより正確に予測し、以前のフレームとの偏差を小さくする。
- 参考スコア(独自算出の注目度): 6.27372232212177
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In self driving car applications, there is a requirement to predict the
location of the lane given an input RGB front facing image. In this paper, we
propose an architecture that allows us to increase the speed and robustness of
road detection without a large hit in accuracy by introducing an underlying
shared feature space that is propagated over time, which serves as a flowing
dynamic memory. By utilizing the gist of previous frames, we train the network
to predict the current road with a greater accuracy and lesser deviation from
previous frames.
- Abstract(参考訳): 自動運転車の応用においては、入力されたRGB前面画像から車線の位置を予測する必要がある。
本稿では,時間とともに伝播する共有機能空間を導入することで,道路検出の速度とロバスト性を大幅に向上させることができるアーキテクチャを提案する。
従来のフレームのgistを利用してネットワークを訓練し、従来のフレームよりも精度が高く、ずれが少ない現在の道路を予測する。
関連論文リスト
- Spatial-temporal Vehicle Re-identification [3.7748602100709534]
信頼性の高いカメラネットワークトポロジを推定する空間時空間車両ReIDフレームワークを提案する。
提案手法に基づいて,公開データセット(VeRi776)において,ランク1の精度の99.64%向上した。
論文 参考訳(メタデータ) (2023-09-03T13:07:38Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - On the road to more accurate mobile cellular traffic predictions [0.0]
我々は、セル上の短期的な将来の負荷を予測するために、ハイウェイフローと平均速度変数とセルネットワークトラフィックメトリクスを併用する。
これは、主に都市のシナリオを研究する先行技術とは対照的である。
学習構造は、セルまたはエッジレベルで使用することができ、フェデレーション付き学習と集中型学習の両方に適用できる。
論文 参考訳(メタデータ) (2023-05-24T15:18:46Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
本稿では,鳥の目視で道路配置と車両占有率によって形成された局所地図を再構築する新しい枠組みを提案する。
我々のモデルは1つのGPU上で25FPSで動作し、リアルタイムパノラマHDマップの再構築に有効である。
論文 参考訳(メタデータ) (2022-11-15T13:52:41Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Road Roughness Estimation Using Machine Learning [0.0]
自動車の垂直加速度と速度を用いた道路粗さ予測のための機械学習パイプラインを提案する。
その結果,従来の乗用車に搭載された車内センサを用いて,道路の粗さを正確に予測できることが示唆された。
論文 参考訳(メタデータ) (2021-07-02T17:37:55Z) - Memory-Augmented Reinforcement Learning for Image-Goal Navigation [67.3963444878746]
本論文では,クロスエピソードメモリを活用したナビゲーション学習法を提案する。
オーバーフィッティングを避けるため、トレーニング中にRGB入力にデータ拡張を適用することを提案する。
この競合性能はRGB入力のみから得られるが,位置や深度などのセンサは利用できない。
論文 参考訳(メタデータ) (2021-01-13T16:30:20Z) - Convolutional Recurrent Network for Road Boundary Extraction [99.55522995570063]
我々は,LiDARとカメラ画像からの道路境界抽出の問題に取り組む。
我々は,完全畳み込みネットワークが道路境界の位置と方向をエンコードする深い特徴量を得る構造化モデルを設計する。
北米の大都市において,道路境界の完全なトポロジを99.3%の時間で得られる方法の有効性を示す。
論文 参考訳(メタデータ) (2020-12-21T18:59:12Z) - Holistic Grid Fusion Based Stop Line Estimation [5.5476621209686225]
交差点で前もって停止する場所を知ることは、車両の長手速度を制御する上で必須のパラメータである。
文献における既存の手法のほとんどは、カメラのみを使用して停止線を検出するが、通常は検出範囲の点で不十分である。
本稿では,ステレオカメラやライダーなどの融合多感データを入力として活用し,ニューラルネットワークアーキテクチャを慎重に設計し,停止線を検出する手法を提案する。
論文 参考訳(メタデータ) (2020-09-18T21:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。