論文の概要: Integrate-and-Fire Neurons for Low-Powered Pattern Recognition
- arxiv url: http://arxiv.org/abs/2106.14596v1
- Date: Mon, 28 Jun 2021 12:08:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 17:58:26.116210
- Title: Integrate-and-Fire Neurons for Low-Powered Pattern Recognition
- Title(参考訳): 低出力パターン認識のための積分・燃焼ニューロン
- Authors: Florian Bacho and Dominique Chu
- Abstract要約: コンデンサの電荷と放電特性を利用した低出力ニューロンモデル「Integrate-and-Fire」を導入する。
並列および直列RC回路を用いて、繰り返し形式で表現できるトレーニング可能なニューロンモデルを開発した。
本論文は,第20回人工知能・ソフトコンピューティングWebシステム国際会議(ICAISC 2021)で発表された研究の全文である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Embedded systems acquire information about the real world from sensors and
process it to make decisions and/or for transmission. In some situations, the
relationship between the data and the decision is complex and/or the amount of
data to transmit is large (e.g. in biologgers). Artificial Neural Networks
(ANNs) can efficiently detect patterns in the input data which makes them
suitable for decision making or compression of information for data
transmission. However, ANNs require a substantial amount of energy which
reduces the lifetime of battery-powered devices. Therefore, the use of Spiking
Neural Networks can improve such systems by providing a way to efficiently
process sensory data without being too energy-consuming. In this work, we
introduce a low-powered neuron model called Integrate-and-Fire which exploits
the charge and discharge properties of the capacitor. Using parallel and series
RC circuits, we developed a trainable neuron model that can be expressed in a
recurrent form. Finally, we trained its simulation with an artificially
generated dataset of dog postures and implemented it as hardware that showed
promising energetic properties. This paper is the full text of the research,
presented at the 20th International Conference on Artificial Intelligence and
Soft Computing Web System (ICAISC 2021)
- Abstract(参考訳): 組み込みシステムはセンサーから現実世界に関する情報を取得し、それを処理して意思決定や伝達を行う。
一部の状況では、データと決定の関係は複雑であり、/または送信するデータの量が大きい(例)。
in biologgers)
ニューラルネットワーク(anns)は、入力データのパターンを効率的に検出することができ、データ転送のための情報の意思決定や圧縮に適している。
しかし、ANNはバッテリー駆動装置の寿命を短縮する相当なエネルギーを必要とする。
したがって、スパイキングニューラルネットワークを使うことで、エネルギーを消費しすぎずに知覚データを効率的に処理する方法を提供することで、そのようなシステムを改善することができる。
本研究では,キャパシタの電荷と放電特性を利用する低出力ニューロンモデルであるintegration-and-fireを提案する。
並列および直列RC回路を用いて、繰り返し形式で表現できるトレーニング可能なニューロンモデルを開発した。
最後に、犬体姿勢の人工的データセットを用いてシミュレーションを訓練し、有望なエネルギー特性を示すハードウェアとして実装した。
本論文は,第20回人工知能・ソフトコンピューティングWebシステム国際会議(ICAISC 2021)で発表された研究の全文である。
関連論文リスト
- Data-Driven Fire Modeling: Learning First Arrival Times and Model Parameters with Neural Networks [12.416949154231714]
火災科学における力学をパラメータ化するニューラルネットワークの能力について検討する。
特に,火災時の5つの重要なパラメータを最初の到着時刻までマッピングするニューラルネットワークについて検討する。
逆問題に対して、各キーパラメータを推定する際のネットワークの感度を定量化する。
論文 参考訳(メタデータ) (2024-08-16T19:54:41Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AIベースのアプリケーションは、スケジューリングや電力制御などの機能を実行するために、インテリジェントコントローラにデプロイされる。
コンテキストとAIモデルのパラメータのマッピングは、ゼロショット方式で理想的に行われる。
本稿では,AMSマッピングのオンライン最適化のための一般的な手法を紹介する。
論文 参考訳(メタデータ) (2024-06-22T11:17:50Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
論文 参考訳(メタデータ) (2024-04-02T10:19:04Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
本稿では、インテリジェントなデータ伝送機能を備えたセンシングフレームワークを実現するための新しいセンシングモジュールを提案する。
センサの近くに置かれる高効率機械学習モデルを統合する。
このモデルは,無関係な情報を破棄しながら,貴重なデータのみを送信するセンサシステムに対して,迅速なフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-03T05:41:39Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
ニューロモルフィックコンピューティングはスパイクベースのエネルギー効率の高い通信に依存している。
本研究では, スパイクトレインへのサンプルベースデータの符号化に適した構成を同定するツールを開発した。
WaLiN-GUIはオープンソースとドキュメントが提供されている。
論文 参考訳(メタデータ) (2023-10-25T20:34:08Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - A Spiking Neural Network based on Neural Manifold for Augmenting
Intracortical Brain-Computer Interface Data [5.039813366558306]
脳-コンピュータインターフェース(BCI)は、脳内の神経信号をインストラクションに変換して外部デバイスを制御する。
高度な機械学習手法の出現により、脳-コンピュータインタフェースの能力はかつてないほど強化された。
ここでは、データジェネレータとしてスパイキングニューラルネットワーク(SNN)を用いる。
論文 参考訳(メタデータ) (2022-03-26T15:32:31Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - A reconfigurable neural network ASIC for detector front-end data
compression at the HL-LHC [0.40690419770123604]
ニューラルネットワークのオートエンコーダモデルを放射線耐性ASICに実装して、損失のあるデータ圧縮を行うことができる。
これは、粒子物理学アプリケーション用に設計されたニューラルネットワークの耐放射線性オンディテクタASIC実装である。
論文 参考訳(メタデータ) (2021-05-04T18:06:23Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z) - Flexible Transmitter Network [84.90891046882213]
現在のニューラルネットワークはMPモデルに基づいて構築されており、通常はニューロンを他のニューロンから受信した信号の実際の重み付け集約上での活性化関数の実行として定式化する。
本稿では,フレキシブル・トランスミッタ(FT)モデルを提案する。
本稿では、最も一般的な完全接続型フィードフォワードアーキテクチャ上に構築された、フレキシブルトランスミッタネットワーク(FTNet)について述べる。
論文 参考訳(メタデータ) (2020-04-08T06:55:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。