論文の概要: Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning
- arxiv url: http://arxiv.org/abs/2404.01815v3
- Date: Mon, 16 Sep 2024 11:08:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 02:35:35.524424
- Title: Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning
- Title(参考訳): ウェイクアップラジオを用いたニューロモルフィックスプリットコンピューティング:デジタルツインニングによるアーキテクチャと設計
- Authors: Jiechen Chen, Sangwoo Park, Petar Popovski, H. Vincent Poor, Osvaldo Simeone,
- Abstract要約: 本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を組み込んだ新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
- 参考スコア(独自算出の注目度): 97.99077847606624
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic computing leverages the sparsity of temporal data to reduce processing energy by activating a small subset of neurons and synapses at each time step. When deployed for split computing in edge-based systems, remote neuromorphic processing units (NPUs) can reduce the communication power budget by communicating asynchronously using sparse impulse radio (IR) waveforms. This way, the input signal sparsity translates directly into energy savings both in terms of computation and communication. However, with IR transmission, the main contributor to the overall energy consumption remains the power required to maintain the main radio on. This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs. A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making. To address this problem, as a second contribution, this work proposes a novel methodology that leverages the use of a digital twin (DT), i.e., a simulator, of the physical system, coupled with a sequential statistical testing approach known as Learn Then Test (LTT) to provide theoretical reliability guarantees. The proposed DT-LTT methodology is broadly applicable to other design problems, and is showcased here for neuromorphic communications. Experimental results validate the design and the analysis, confirming the theoretical reliability guarantees and illustrating trade-offs among reliability, energy consumption, and informativeness of the decisions.
- Abstract(参考訳): ニューロモルフィックコンピューティングは、時間データの間隔を利用して、各ステップでニューロンとシナプスの小さなサブセットを活性化することで、処理エネルギーを削減する。
エッジベースシステムにおけるスプリットコンピューティングのためにデプロイされると、リモートニューロモルフィック処理ユニット(NPU)はスパースインパルス電波(IR)波形を用いて非同期に通信することで通信電力予算を削減できる。
このように、入力信号の間隔は計算と通信の両面で直接省エネに変換される。
しかし、IR伝送では、エネルギー消費全体への主な貢献は、主無線を継続するために必要な電力である。
本研究は,遠隔・無線接続型NPUからなる分割計算機システムに,覚醒無線機構を統合した新しいアーキテクチャを提案する。
覚醒無線に基づくニューロモルフィックスプリットコンピューティングシステムの設計における重要な課題は、検知、覚醒信号検出、意思決定のためのしきい値の選択である。
この問題に対処するため、第2のコントリビューションとして、物理システムのシミュレータであるデジタルツイン(DT)と、理論的信頼性を保証するためのLearning Then Test(LTT)と呼ばれるシーケンシャルな統計的テスト手法を併用した、新しい方法論を提案する。
提案したDT-LTT法は他の設計問題にも広く適用でき、神経形通信にも応用できる。
実験結果は,信頼性の保証と信頼性,エネルギー消費,意思決定の伝達性に関するトレードオフを検証し,設計と分析を検証した。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
6G時代には、無線リソースのリアルタイムモニタリングと管理が、多様な無線アプリケーションをサポートするように求められている。
本稿では,GAN(Generative Adversarial Network)による協調的無線地図推定手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T05:01:28Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
デジタルツイン(DT)は、物理世界の仮想表現と通信(例えば6G)、コンピュータ、人工知能(AI)技術を活用して、多くの接続されたインテリジェンスサービスを実現する。
無線システムは、厳密な通信制約下での情報意思決定を容易にするために意味コミュニケーション(SC)のパラダイムを利用することができる。
DTベースの無線システムでは,因果意味通信(CSC)と呼ばれる新しいフレームワークが提案されている。
論文 参考訳(メタデータ) (2023-04-25T00:15:00Z) - Label-free timing analysis of SiPM-based modularized detectors with
physics-constrained deep learning [9.234802409391111]
モジュール化検出器のタイミング解析のためのディープラーニングに基づく新しい手法を提案する。
本稿では,提案手法が求める最適関数の存在を数学的に証明し,モデルのトレーニングと校正のための体系的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-24T09:16:31Z) - Neuro-Symbolic Causal Reasoning Meets Signaling Game for Emergent
Semantic Communications [71.63189900803623]
創発的SCシステムフレームワークを提案し,創発的言語設計のためのシグナリングゲームと因果推論のためのニューロシンボリック(NeSy)人工知能(AI)アプローチで構成されている。
ESCシステムは、意味情報、信頼性、歪み、類似性の新たな指標を強化するように設計されている。
論文 参考訳(メタデータ) (2022-10-21T15:33:37Z) - Neuromorphic Integrated Sensing and Communications [28.475406916976247]
ニューロモルフィック統合センシングと通信(N-ISAC)を導入し,効率的なオンラインデータデコーディングとレーダセンシングを実現する。
N-ISACは、デジタル情報を伝達し、レーダーターゲットの有無を検出するために、共通のIR波形を利用する。
受信機にスパイキングニューラルネットワーク(SNN)を配置し、デジタルデータを復号し、受信した信号から直接レーダーターゲットを検出する。
論文 参考訳(メタデータ) (2022-09-24T00:23:25Z) - Integrate-and-Fire Neurons for Low-Powered Pattern Recognition [0.0]
コンデンサの電荷と放電特性を利用した低出力ニューロンモデル「Integrate-and-Fire」を導入する。
並列および直列RC回路を用いて、繰り返し形式で表現できるトレーニング可能なニューロンモデルを開発した。
本論文は,第20回人工知能・ソフトコンピューティングWebシステム国際会議(ICAISC 2021)で発表された研究の全文である。
論文 参考訳(メタデータ) (2021-06-28T12:08:00Z) - End-to-End Learning of Neuromorphic Wireless Systems for Low-Power Edge
Artificial Intelligence [38.518936229794214]
我々は、ニューロモルフィックセンシング、インパルスラジオ(IR)、スパイキングニューラルネットワーク(SNN)に基づく、遠隔無線推論のための新しい「オールスパイク」低電力ソリューションを提案する。
我々は,エンコーダ,チャネル,デコーダのカスケードを,JSCC(Joint Source-Channel Coding)を実装した確率的SNNベースのオートエンコーダとして扱うエンドツーエンドのトレーニング手順を導入する。
実験により、提案したエンドツーエンドのニューロモルフィックエッジアーキテクチャが、効率的で低レイテンシなリモートセンシング、通信、推論のための有望なフレームワークを提供することを確認した。
論文 参考訳(メタデータ) (2020-09-03T09:10:16Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
フェデレートラーニング(Federated Learning)は、無線デバイスとのコラボレーションによって、中央サーバでグローバルモデルをトレーニングするための、プライバシ保護のアプローチである。
本稿では,大規模マルチインプット多出力通信システム上でのフェデレーション学習のための圧縮センシング手法を提案する。
論文 参考訳(メタデータ) (2020-03-18T05:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。