論文の概要: Explicit Clothing Modeling for an Animatable Full-Body Avatar
- arxiv url: http://arxiv.org/abs/2106.14879v1
- Date: Mon, 28 Jun 2021 17:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-29 18:59:29.861546
- Title: Explicit Clothing Modeling for an Animatable Full-Body Avatar
- Title(参考訳): アニメ化可能な全身アバターの服飾モデル
- Authors: Donglai Xiang, Fabian Andres Prada, Timur Bagautdinov, Weipeng Xu,
Yuan Dong, He Wen, Jessica Hodgins, Chenglei Wu
- Abstract要約: マルチビューキャプチャービデオから上半身の衣服を明示的に表現したアニマタブルな布製のアバターを製作した。
身体力学と衣服状態の相互作用を学習するために、時間的畳み込みネットワークを用いて衣服潜伏コードの予測を行う。
3つの異なるアクターに対してフォトリアリスティックなアニメーションを出力し、単層アバターよりも布体アバターの利点を実演する。
- 参考スコア(独自算出の注目度): 21.451440299450592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has shown great progress in building photorealistic animatable
full-body codec avatars, but these avatars still face difficulties in
generating high-fidelity animation of clothing. To address the difficulties, we
propose a method to build an animatable clothed body avatar with an explicit
representation of the clothing on the upper body from multi-view captured
videos. We use a two-layer mesh representation to separately register the 3D
scans with templates. In order to improve the photometric correspondence across
different frames, texture alignment is then performed through inverse rendering
of the clothing geometry and texture predicted by a variational autoencoder. We
then train a new two-layer codec avatar with separate modeling of the upper
clothing and the inner body layer. To learn the interaction between the body
dynamics and clothing states, we use a temporal convolution network to predict
the clothing latent code based on a sequence of input skeletal poses. We show
photorealistic animation output for three different actors, and demonstrate the
advantage of our clothed-body avatars over single-layer avatars in the previous
work. We also show the benefit of an explicit clothing model which allows the
clothing texture to be edited in the animation output.
- Abstract(参考訳): 最近の研究は、フォトリアリスティック・アニマタブルフルボディ・コーデック・アバターの構築に大きな進歩を見せているが、これらのアバターは服の高忠実なアニメーションを作成するのに依然として困難に直面している。
そこで本研究では,多視点映像から,上半身の衣服を明示的に表現した想像可能な身体アバターを構築する手法を提案する。
2層メッシュ表現を用いてテンプレートで3Dスキャンを別々に登録する。
異なるフレーム間での光度対応を改善するために、変分オートエンコーダによって予測される衣服形状とテクスチャの逆レンダリングによりテクスチャアライメントを行う。
次に,上着と内装層を別々にモデル化した新しい2層コーデックアバターを訓練する。
身体の動態と衣服状態の相互作用を学習するために, 時系列畳み込みネットワークを用いて, 入力骨格ポーズのシーケンスに基づいて, 衣服潜伏コードの予測を行う。
3つの異なるアクターに対してフォトリアリスティックなアニメーションを出力し、前作の単層アバターよりも布体アバターの利点を実演する。
また、アニメーション出力で衣服のテクスチャを編集できる明示的な衣料モデルの有用性を示す。
関連論文リスト
- PICA: Physics-Integrated Clothed Avatar [30.277983921620663]
PICAは, 物理学的精度のよい, 高忠実でアニマタブルな人間のアバターを, ゆるやかな衣服でも表現できる新しい表現法である。
提案手法は, 複雑で斬新な運転ポーズにおいて, 人体の高忠実なレンダリングを実現し, 従来手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-07-07T10:23:21Z) - LayGA: Layered Gaussian Avatars for Animatable Clothing Transfer [40.372917698238204]
我々は、体と衣服を2つの別々の層として定式化する新しい表現であるLayGA(LayGA)を提示する。
我々の表現は、ガウスの地図に基づくアバターの上に構築され、衣服の詳細の表現力に優れています。
単層再構成では,滑らかな表面を再構成するための一連の幾何的制約を提案する。
多層フィッティングの段階では、体と衣服を表すために2つの異なるモデルを訓練し、再構築された衣服のジオメトリーを3D監視として活用する。
論文 参考訳(メタデータ) (2024-05-12T16:11:28Z) - AniDress: Animatable Loose-Dressed Avatar from Sparse Views Using
Garment Rigging Model [58.035758145894846]
AniDressは、非常にスパースなマルチビュービデオを用いて、ゆるい服装でアニマタブルな人間のアバターを生成する新しい方法である。
身体運動と衣服運動の両方に条件付されたポーズ駆動型変形可能なニューラルラディアンス場を導入し、両方の部品を明示的に制御する。
本手法は,身体から高度に逸脱する自然の衣服のダイナミックスを描画し,目に見えない景色とポーズの両方に一般化することができる。
論文 参考訳(メタデータ) (2024-01-27T08:48:18Z) - AvatarStudio: High-fidelity and Animatable 3D Avatar Creation from Text [71.09533176800707]
アバターストゥディオ(AvatarStudio)は、アニマタブルな人間のアバターのために、明瞭なテクスチャ化された3Dメッシュを生成する粗大で微細な生成モデルである。
調音メッシュ表現とDensePose条件拡散モデルとの相乗効果を効果的に活用することにより、AvatarStudioは高品質なアバターを作成することができる。
論文 参考訳(メタデータ) (2023-11-29T18:59:32Z) - AvatarFusion: Zero-shot Generation of Clothing-Decoupled 3D Avatars
Using 2D Diffusion [34.609403685504944]
ゼロショットテキスト-アバター生成のためのフレームワークであるAvatarFusionを提案する。
我々は遅延拡散モデルを用いて、人間の現実的なアバターを生成するためのピクセルレベルのガイダンスを提供する。
また,身体と衣服の生成を意味的に分離する新たな最適化手法である,PS-DS(Pixel-Semantics Difference-Sampling)を導入する。
論文 参考訳(メタデータ) (2023-07-13T02:19:56Z) - DreamWaltz: Make a Scene with Complex 3D Animatable Avatars [68.49935994384047]
本稿では,テキストガイダンスとパラメトリック人体を用いた複雑な3Dアバターの生成とアニメーションを行う新しいフレームワークであるDreamWaltzを紹介する。
アニメーションでは,様々なポーズに条件付き拡散モデルの豊富な画像から,アニマタブルな3次元アバター表現を学習する。
論文 参考訳(メタデータ) (2023-05-21T17:59:39Z) - Capturing and Animation of Body and Clothing from Monocular Video [105.87228128022804]
メッシュベース体とニューラル放射場を組み合わせたハイブリッドモデルであるSCARFを提案する。
メッシュをレンダリングに統合することで、モノクロビデオから直接SCARFを最適化できます。
本研究は,SCARFが従来の方法よりも高品質な衣服であり,身体のポーズや体型の変化とともに衣服が変形し,異なる被験者のアバター間で衣服の移動が成功できることを実証する。
論文 参考訳(メタデータ) (2022-10-04T19:34:05Z) - Dressing Avatars: Deep Photorealistic Appearance for Physically
Simulated Clothing [49.96406805006839]
リアルな衣服の動態とリアルなデータから学んだフォトリアリスティックな外観の両方を示す衣服の明示的なモデリングを施したポーズ駆動アバターを紹介した。
我々の重要な貢献は物理的にインスパイアされた外観ネットワークであり、視界依存的かつダイナミックな影効果を持つ光リアルな外観を生成できる。
論文 参考訳(メタデータ) (2022-06-30T17:58:20Z) - The Power of Points for Modeling Humans in Clothing [60.00557674969284]
現在、アーティストはリアルな衣服で自然に動く3Dアバターを作る必要がある。
3次元表現は様々なトポロジを高分解能で捉えることができ、データから学習できることを示す。
我々は、異なる衣服の形状を表現するために、新しい局所的な衣服幾何学的特徴を持つニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2021-09-02T17:58:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。