論文の概要: Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
- arxiv url: http://arxiv.org/abs/2106.15307v1
- Date: Tue, 8 Jun 2021 14:13:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-04 19:37:30.461718
- Title: Deep Random Projection Outlyingness for Unsupervised Anomaly Detection
- Title(参考訳): 教師なし異常検出のための深部ランダム投影アウトライジングネス
- Authors: Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, Claude Adnet,
Olivier Airiau
- Abstract要約: 元のランダムプロジェクションアウトライジングネス尺度をニューラルネットワークに修正して関連付け、教師なし異常検出方法を得る。
提案したニューラルネットワークアプローチの性能は、最先端の異常検出手法に匹敵する。
- 参考スコア(独自算出の注目度): 1.2249546377051437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random projection is a common technique for designing algorithms in a variety
of areas, including information retrieval, compressive sensing and measuring of
outlyingness. In this work, the original random projection outlyingness measure
is modified and associated with a neural network to obtain an unsupervised
anomaly detection method able to handle multimodal normality. Theoretical and
experimental arguments are presented to justify the choices of the anomaly
score estimator, the dimensions of the random projections, and the number of
such projections. The contribution of adapted dropouts is investigated, along
with the affine stability of the proposed method. The performance of the
proposed neural network approach is comparable to a state-of-the-art anomaly
detection method. Experiments conducted on the MNIST, Fashion-MNIST and
CIFAR-10 datasets show the relevance of the proposed approach, and suggest a
possible extension to a semi-supervised setup.
- Abstract(参考訳): ランダムプロジェクションは、情報検索、圧縮センシング、アウトラインネスの測定など、様々な領域でアルゴリズムを設計する一般的な手法である。
本研究では、元のランダム射出性尺度をニューラルネットワークに修正して関連付け、マルチモーダル正規性を扱うことができる教師なし異常検出方法を得る。
理論的および実験的議論は、異常スコア推定器の選択、ランダム射影の次元、およびそのような射影の数を正当化するために提示される。
提案手法のアフィン安定性とともに,適応型ドロップアウトの寄与について検討した。
提案したニューラルネットワークアプローチの性能は、最先端の異常検出手法に匹敵する。
MNIST、Fashion-MNIST、CIFAR-10データセットで実施された実験は、提案手法の妥当性を示し、半教師付きセットアップの拡張の可能性を示している。
関連論文リスト
- A Mallows-like Criterion for Anomaly Detection with Random Forest Implementation [7.569443648362081]
本稿では,複数のモデルの集約における重み付けを選択するための新しい基準を提案する。
提案手法をネットワーク侵入を含む様々な領域にわたるベンチマークデータセット上で評価した。
論文 参考訳(メタデータ) (2024-05-29T09:36:57Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Bagged Regularized $k$-Distances for Anomaly Detection [9.899763598214122]
BRDAD (Bagged regularized $k$-distances for Anomaly Detection) と呼ばれる距離に基づく新しいアルゴリズムを提案する。
我々のBRDADアルゴリズムは、重み付けされた密度推定のための$k$-distances(BWDDE)の実証的リスクの有限標本境界を最小化して重みを選択する。
理論的には,我々のアルゴリズムに対するAUCの高速収束率を確立し,バッグング手法が計算複雑性を著しく減少させることを示す。
論文 参考訳(メタデータ) (2023-12-02T07:00:46Z) - Window-Based Distribution Shift Detection for Deep Neural Networks [21.73028341299301]
本研究では,データストリームを受信したディープニューラルネットワーク(DNN)の正常動作をモニタリングする場合について検討する。
選択的予測原理を用いて,DNNの分布偏差検出手法を提案する。
我々の新しい検出法は、最先端技術よりもかなり少ない時間を消費しながら、オンパー以上の性能を発揮する。
論文 参考訳(メタデータ) (2022-10-19T21:27:25Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - A Multi-Scale A Contrario method for Unsupervised Image Anomaly
Detection [0.5156484100374058]
コンボリューションにより得られた特徴写像に統計的解析を適用した画像中の異常を検出するためのコントロリオフレームワークを提案する。
提案手法はマルチスケールで完全に教師なしであり,様々なシナリオで異常を検出することができる。
この研究の最終的な目標は、自動車産業における革サンプルの微妙な欠陥を検出することであるが、同じアルゴリズムが、パブリックな異常データセットにおけるアート結果の状態を達成していることを示す。
論文 参考訳(メタデータ) (2021-10-05T23:29:58Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
畳み込みニューラルネットワーク(CNN)技術は、画像ベースの異常検出アプリケーションにおいて非常に有用であることが証明されている。
モデル・オブ・ノーマル性(MoN)を用いた類似度尺度に基づく異常検出のための伝達学習フレームワークを提案する。
提案したしきい値設定により,大幅な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-11-12T05:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。