GeoT: A Geometry-aware Transformer for Reliable Molecular Property
Prediction and Chemically Interpretable Representation Learning
- URL: http://arxiv.org/abs/2106.15516v3
- Date: Wed, 28 Jun 2023 13:51:49 GMT
- Title: GeoT: A Geometry-aware Transformer for Reliable Molecular Property
Prediction and Chemically Interpretable Representation Learning
- Authors: Bumju Kwak, Jiwon Park, Taewon Kang, Jeonghee Jo, Byunghan Lee,
Sungroh Yoon
- Abstract summary: We introduce a novel Transformer-based framework for molecular representation learning, named the Geometry-aware Transformer (GeoT)
GeoT learns molecular graph structures through attention-based mechanisms specifically designed to offer reliable interpretability, as well as molecular property prediction.
Our comprehensive experiments, including an empirical simulation, reveal that GeoT effectively learns the chemical insights into molecular structures, bridging the gap between artificial intelligence and molecular sciences.
- Score: 16.484048833163282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, molecular representation learning has emerged as a key area
of focus in various chemical tasks. However, many existing models fail to fully
consider the geometric information of molecular structures, resulting in less
intuitive representations. Moreover, the widely used message-passing mechanism
is limited to provide the interpretation of experimental results from a
chemical perspective. To address these challenges, we introduce a novel
Transformer-based framework for molecular representation learning, named the
Geometry-aware Transformer (GeoT). GeoT learns molecular graph structures
through attention-based mechanisms specifically designed to offer reliable
interpretability, as well as molecular property prediction. Consequently, GeoT
can generate attention maps of interatomic relationships associated with
training objectives. In addition, GeoT demonstrates comparable performance to
MPNN-based models while achieving reduced computational complexity. Our
comprehensive experiments, including an empirical simulation, reveal that GeoT
effectively learns the chemical insights into molecular structures, bridging
the gap between artificial intelligence and molecular sciences.
Related papers
- Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
We propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies.
Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 46 diverse datasets.
arXiv Detail & Related papers (2023-06-15T05:37:25Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
We propose an equivariant geometry-enhanced graph neural network called ViSNet, which elegantly extracts geometric features and efficiently models molecular structures.
Our proposed ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks, including MD17, revised MD17 and MD22, and achieves excellent chemical property prediction on QM9 and Molecule3D datasets.
arXiv Detail & Related papers (2022-10-29T07:12:46Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Equivariant Graph Attention Networks for Molecular Property Prediction [0.34376560669160383]
Learning about 3D molecular structures with varying size is an emerging challenge in machine learning and especially in drug discovery.
We propose an equivariant Graph Neural Networks (GNN) that operates with Cartesian coordinates to incorporate directionality.
We demonstrate the efficacy of our architecture on predicting quantum mechanical properties of small molecules and its benefit on problems that concern macromolecular structures such as protein complexes.
arXiv Detail & Related papers (2022-02-20T19:07:29Z) - Geometric Deep Learning on Molecular Representations [0.0]
Geometric deep learning (GDL) is based on neural network architectures that incorporate and process symmetry information.
This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry.
Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors.
arXiv Detail & Related papers (2021-07-26T09:23:43Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
We present a SMILES Variational Auto-Encoder (VAE) augmented with topological data analysis (TDA) representations of molecules.
Our experiments show that this TDA augmentation enables a SMILES VAE to capture the complex relation between 3D geometry and electronic properties.
arXiv Detail & Related papers (2021-06-08T15:49:21Z) - Molecular CT: Unifying Geometry and Representation Learning for
Molecules at Different Scales [3.987395340580183]
A new deep neural network architecture, Molecular Configuration Transformer ( Molecular CT), is introduced for this purpose.
The computational efficiency and universality make Molecular CT versatile for a variety of molecular learning scenarios.
As examples, we show that Molecular CT enables representational learning for molecular systems at different scales, and achieves comparable or improved results on common benchmarks.
arXiv Detail & Related papers (2020-12-22T03:41:16Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.