Geometric Deep Learning on Molecular Representations
- URL: http://arxiv.org/abs/2107.12375v1
- Date: Mon, 26 Jul 2021 09:23:43 GMT
- Title: Geometric Deep Learning on Molecular Representations
- Authors: Kenneth Atz, Francesca Grisoni, Gisbert Schneider
- Abstract summary: Geometric deep learning (GDL) is based on neural network architectures that incorporate and process symmetry information.
This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry.
Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Geometric deep learning (GDL), which is based on neural network architectures
that incorporate and process symmetry information, has emerged as a recent
paradigm in artificial intelligence. GDL bears particular promise in molecular
modeling applications, in which various molecular representations with
different symmetry properties and levels of abstraction exist. This review
provides a structured and harmonized overview of molecular GDL, highlighting
its applications in drug discovery, chemical synthesis prediction, and quantum
chemistry. Emphasis is placed on the relevance of the learned molecular
features and their complementarity to well-established molecular descriptors.
This review provides an overview of current challenges and opportunities, and
presents a forecast of the future of GDL for molecular sciences.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
Molecular representation learning plays a crucial role in AI-assisted drug discovery research.
We propose a Harmonic Molecular Representation learning framework, which represents a molecule using the Laplace-Beltrami eigenfunctions of its molecular surface.
arXiv Detail & Related papers (2023-03-27T18:02:47Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Knowledge-informed Molecular Learning: A Survey on Paradigm Transfer [20.893861195128643]
Machine learning, notably deep learning, has significantly propelled molecular investigations within the biochemical sphere.
Traditionally, modeling for such research has centered around a handful of paradigms.
To enhance the generation and decipherability of purely data-driven models, scholars have integrated biochemical domain knowledge into these molecular study models.
arXiv Detail & Related papers (2022-02-17T06:18:02Z) - GeoT: A Geometry-aware Transformer for Reliable Molecular Property
Prediction and Chemically Interpretable Representation Learning [16.484048833163282]
We introduce a novel Transformer-based framework for molecular representation learning, named the Geometry-aware Transformer (GeoT)
GeoT learns molecular graph structures through attention-based mechanisms specifically designed to offer reliable interpretability, as well as molecular property prediction.
Our comprehensive experiments, including an empirical simulation, reveal that GeoT effectively learns the chemical insights into molecular structures, bridging the gap between artificial intelligence and molecular sciences.
arXiv Detail & Related papers (2021-06-29T15:47:18Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
We present a SMILES Variational Auto-Encoder (VAE) augmented with topological data analysis (TDA) representations of molecules.
Our experiments show that this TDA augmentation enables a SMILES VAE to capture the complex relation between 3D geometry and electronic properties.
arXiv Detail & Related papers (2021-06-08T15:49:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.