論文の概要: Ethical AI-Powered Regression Test Selection
- arxiv url: http://arxiv.org/abs/2106.16050v1
- Date: Wed, 30 Jun 2021 13:24:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 18:26:14.759960
- Title: Ethical AI-Powered Regression Test Selection
- Title(参考訳): 倫理的AIによる回帰テストの選択
- Authors: Per Erik Strandberg, Mirgita Frasheri, Eduard Paul Enoiu
- Abstract要約: 人工知能(AI-RTS)による回帰テスト選択(RTS)の自動化と強化
私たちは3つの課題(責任の割り当て、意思決定のバイアス、参加の欠如)と3つのアプローチ(説明可能性、監督、多様性)を特定します。
我々は、倫理的AI-RTSのチェックリストを提供し、プロセスに関わるステークホルダーの意思決定のガイドを支援します。
- 参考スコア(独自算出の注目度): 5.615369355847198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Test automation is common in software development; often one tests repeatedly
to identify regressions. If the amount of test cases is large, one may select a
subset and only use the most important test cases. The regression test
selection (RTS) could be automated and enhanced with Artificial Intelligence
(AI-RTS). This however could introduce ethical challenges. While such
challenges in AI are in general well studied, there is a gap with respect to
ethical AI-RTS. By exploring the literature and learning from our experiences
of developing an industry AI-RTS tool, we contribute to the literature by
identifying three challenges (assigning responsibility, bias in decision-making
and lack of participation) and three approaches (explicability, supervision and
diversity). Additionally, we provide a checklist for ethical AI-RTS to help
guide the decision-making of the stakeholders involved in the process.
- Abstract(参考訳): テストの自動化はソフトウェア開発では一般的です。
テストケースの数が大きければ、サブセットを選択して、最も重要なテストケースだけを使用することができる。
回帰テスト選択(RTS)は人工知能(AI-RTS)によって自動化され、強化される。
しかし、これは倫理的な問題をもたらす可能性がある。
AIにおけるこのような課題は一般的によく研究されているが、倫理的AI-RTSに関してはギャップがある。
産業用ai-rtsツールの開発経験から文学や学習を探求することで、3つの課題(責任の割り当て、意思決定のバイアス、参加の欠如)と3つのアプローチ(適用性、監督、多様性)を識別することで、文学に貢献する。
さらに、私たちは倫理的AI-RTSのチェックリストを提供し、プロセスに関わるステークホルダの意思決定をガイドします。
関連論文リスト
- AI Research is not Magic, it has to be Reproducible and Responsible: Challenges in the AI field from the Perspective of its PhD Students [1.1922075410173798]
欧州13カ国から28名のAI博士候補を調査した。
課題は、データセット、モデル、実験などのAIリソースの発見可能性と品質だ。
責任と再現可能なAI研究プラクティスをすぐに採用する必要がある。
論文 参考訳(メタデータ) (2024-08-13T12:19:02Z) - OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI [73.75520820608232]
我々は,11,163のバイリンガル問題を含む,テキストのみとインターリーブされたテキストイメージのモダリティを紹介する。
これらの課題には、7つのフィールドと62の国際オリンピック大会にわたる幅広い規律が含まれており、データ漏洩について厳格に調査されている。
我々の評価によると、GPT-4oのような先進モデルでさえ、複雑な推論とマルチモーダル統合における現在のAI制限を反映して、全体的な精度は39.97%しか達成していない。
論文 参考訳(メタデータ) (2024-06-18T16:20:53Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
論文 参考訳(メタデータ) (2024-04-03T08:15:08Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Responsible AI Pattern Catalogue: A Collection of Best Practices for AI
Governance and Engineering [20.644494592443245]
MLR(Multivocal Literature Review)の結果に基づく応答性AIパターンカタログを提案する。
原則やアルゴリズムのレベルにとどまらず、私たちは、AIシステムのステークホルダーが実際に行なえるパターンに注目して、開発済みのAIシステムがガバナンスとエンジニアリングライフサイクル全体を通して責任を負うようにします。
論文 参考訳(メタデータ) (2022-09-12T00:09:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - The application of artificial intelligence in software engineering: a
review challenging conventional wisdom [0.9651131604396904]
この調査章は、ソフトウェア工学に適用されるAIの最も一般的な方法のレビューである。
このレビューでは、1975年から2017年にかけての要件フェーズについて、46の主要なAI駆動手法が発見されている。
この章の目的は、以下の質問に答えることである。
論文 参考訳(メタデータ) (2021-08-03T15:59:59Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。