Probability in many-worlds theories
- URL: http://arxiv.org/abs/2106.16145v3
- Date: Thu, 30 Mar 2023 09:32:37 GMT
- Title: Probability in many-worlds theories
- Authors: Anthony J. Short
- Abstract summary: We consider how to define a natural probability distribution over worlds within a simple class of deterministic many-worlds theories.
This can help us understand the typical properties of worlds within such states, and hence explain the empirical success of quantum theory within a many-worlds framework.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider how to define a natural probability distribution over worlds
within a simple class of deterministic many-worlds theories. This can help us
understand the typical properties of worlds within such states, and hence
explain the empirical success of quantum theory within a many-worlds framework.
We give three reasonable axioms which lead to the Born rule in the case of
quantum theory, and also yield natural results in other cases, including a
many-worlds variant of classical stochastic dynamics.
Related papers
- On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Theory-Independent Realism [0.0]
We use a framework of generalized probabilistic theories to expand the notion of realism for a theory-independent context.
We propose quantifiers for the realism of arbitrary physical properties given a particular state of a generic physical theory.
These theory-independent quantifiers are then employed in quantum mechanics and we investigate their relation with another well-established irrealism measure.
arXiv Detail & Related papers (2024-02-27T01:34:53Z) - Quantum Mechanical Reality: Entanglement and Decoherence [0.0]
We look into the ontology of quantum theory as distinct from that of the classical theory in the sciences.
Within this framework, theories are conceptual constructs applying to models generated in the phenomenal world within limited contexts.
arXiv Detail & Related papers (2023-07-22T19:08:00Z) - Derivation of Standard Quantum Theory via State Discrimination [53.64687146666141]
General Probabilistic Theories (GPTs) is a new information theoretical approach to single out standard quantum theory.
We focus on the bound of the performance for an information task called state discrimination in general models.
We characterize standard quantum theory out of general models in GPTs by the bound of the performance for state discrimination.
arXiv Detail & Related papers (2023-07-21T00:02:11Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - On the relation between quantum theory and probability [0.0]
The theory of probability and the quantum theory, the one mathematical and the other physical, are related in that each admits a number of very different interpretations.
It has been proposed that the conceptual problems of the quantum theory could be, if not resolved, at least mitigated by a proper interpretation of probability.
arXiv Detail & Related papers (2021-08-19T15:24:19Z) - Quantum Darwinism and the spreading of classical information in
non-classical theories [0.0]
Quantum Darwinism posits that the emergence of a classical reality relies on the spreading of classical information from a quantum system to many parts of its environment.
We find that every theory with non-classical features that admits this idealized spreading of classical information must have both entangled states and entangled measurements.
Our result suggests the counter-intuitive general principle that in the presence of local non-classicality, a classical world can only emerge if this non-classicality can be "amplified" to a form of entanglement.
arXiv Detail & Related papers (2020-12-11T18:40:16Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - Perfect Discrimination in Approximate Quantum Theory of General
Probabilistic Theories [51.7367238070864]
We define larger measurement classes that are smoothly connected with the class of POVMs via a parameter.
We give a sufficient condition of perfect discrimination, which shows a significant improvement beyond the class of POVMs.
arXiv Detail & Related papers (2020-04-10T08:45:20Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.