On the relation between quantum theory and probability
- URL: http://arxiv.org/abs/2108.08848v1
- Date: Thu, 19 Aug 2021 15:24:19 GMT
- Title: On the relation between quantum theory and probability
- Authors: Louis Marchildon
- Abstract summary: The theory of probability and the quantum theory, the one mathematical and the other physical, are related in that each admits a number of very different interpretations.
It has been proposed that the conceptual problems of the quantum theory could be, if not resolved, at least mitigated by a proper interpretation of probability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The theory of probability and the quantum theory, the one mathematical and
the other physical, are related in that each admits a number of very different
interpretations. It has been proposed that the conceptual problems of the
quantum theory could be, if not resolved, at least mitigated by a proper
interpretation of probability. We rather show, through a historical and
analytical overview of probability and quantum theory, that if some
interpretations of the one and the other go along particularly well, none
follows in a unique way.
Related papers
- On the applicability of Kolmogorov's theory of probability to the description of quantum phenomena. Part I [0.0]
I show that it is possible to construct a mathematically rigorous theory based on Kolmogorov's axioms and physically natural random variables.
The approach can in principle be adapted to other classes of quantum-mechanical models.
arXiv Detail & Related papers (2024-05-09T12:11:28Z) - Analysis of classical and quantum mechanical concepts of probability: A synopsis [0.0]
An adequate interpretation of probability should be given due attention, particularly with regard to quantum theory.
This paper addresses the central question of what a coherent concept of probability might look like that would do justice to both classical probability theory and quantum theory.
arXiv Detail & Related papers (2024-01-09T10:04:51Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Is there a finite complete set of monotones in any quantum resource theory? [39.58317527488534]
We show that there does not exist a finite set of resource monotones which completely determines all state transformations.
We show that totally ordered theories allow for free transformations between all pure states.
arXiv Detail & Related papers (2022-12-05T18:28:36Z) - On the Interpretation of Quantum Indistinguishability : a No-Go Theorem [0.0]
Physicists are yet to reach a consensus on the interpretation of a quantum wavefunction.
We show that quantum mechanical prediction of maximal violation of Mermin inequality is incompatible with all ontological interpretations for quantum theory.
arXiv Detail & Related papers (2022-04-20T18:39:25Z) - Incompatibility of observables, channels and instruments in information
theories [68.8204255655161]
We study the notion of compatibility for tests of an operational probabilistic theory.
We show that a theory admits of incompatible tests if and only if some information cannot be extracted without disturbance.
arXiv Detail & Related papers (2022-04-17T08:44:29Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Tossing Quantum Coins and Dice [0.0]
This case is an important example of a quantum procedure because it presents a typical framework employed in quantum information processing and quantum computing.
The emphasis is on the clarification of the difference between quantum and classical conditional probabilities.
arXiv Detail & Related papers (2021-03-31T11:39:56Z) - Impossibility of creating a superposition of unknown quantum states [16.467540842571328]
We show that the existence of a protocol that superposes two unknown pure states with nonzero probability leads to violation of other no-go theorems.
Such a protocol can be used to perform certain state discrimination and cloning tasks that are forbidden in quantum theory.
arXiv Detail & Related papers (2020-11-04T13:25:42Z) - One-shot quantum error correction of classical and quantum information [10.957528713294874]
Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
arXiv Detail & Related papers (2020-11-02T01:24:59Z) - The rule of conditional probability is valid in quantum theory [Comment
on Gelman & Yao's "Holes in Bayesian Statistics"] [0.0]
In a recent manuscript, Gelman & Yao claim that "the usual rules of conditional probability fail in the quantum realm"
This comment recalls some relevant literature in quantum theory and shows that (i) Gelman & Yao's statements are false; in fact, the quantum example confirms the rules of probability theory; (ii) the particular inequality found in the quantum example can be shown to appear also in very non-quantum examples, such as drawing from an urn.
arXiv Detail & Related papers (2020-07-16T07:45:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.