論文の概要: Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network
- arxiv url: http://arxiv.org/abs/2106.16194v1
- Date: Wed, 30 Jun 2021 16:42:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-01 15:17:48.565708
- Title: Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network
- Title(参考訳): 分散ディープニューラルネットワークを用いた有限フロントホールセルフリーハイブリッドビームフォーミング
- Authors: Hamed Hojatian, Jeremy Nadal, Jean-Francois Frigon, and Francois
Leduc-Primeau
- Abstract要約: 近接最適解は、アクセスポイント(AP)とネットワークコントローラ(NC)の間で大量の信号交換を必要とする。
本稿では,AP と NC 間の通信オーバーヘッドをゼロあるいは限定して協調ハイブリッドビームフォーミングを行うことができる2つの非教師なしディープニューラルネットワーク(DNN)アーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cell-free massive MIMO (CF-mMIMO) systems represent a promising approach to
increase the spectral efficiency of wireless communication systems. However,
near-optimal solutions require a large amount of signaling exchange between
access points (APs) and the network controller (NC). In addition, the use of
hybrid beamforming in each AP reduces the number of power hungry RF chains, but
imposes a large computational complexity to find near-optimal precoders. In
this letter, we propose two unsupervised deep neural networks (DNN)
architectures, fully and partially distributed, that can perform coordinated
hybrid beamforming with zero or limited communication overhead between APs and
NC, while achieving near-optimal sum-rate with a reduced computational
complexity compared to conventional near-optimal solutions.
- Abstract(参考訳): セルフリーの大規模MIMO (CF-mMIMO) システムは,無線通信システムのスペクトル効率を高めるための有望なアプローチである。
しかし、ほぼ最適解法はアクセスポイント(AP)とネットワークコントローラ(NC)の間で大量の信号交換を必要とする。
さらに、ハイブリッドビームフォーミングを各APで使用すると、空腹のRF鎖の数が減少するが、ほぼ最適なプリコーダを見つけるには計算の複雑さが大きい。
本稿では,2つの非教師付きディープニューラルネットワーク(DNN)アーキテクチャを提案する。このアーキテクチャは,APとNC間の通信オーバーヘッドがゼロあるいは制限された協調ハイブリッドビームフォーミングを実現することができる。
関連論文リスト
- Adaptive Genetic Selection based Pinning Control with Asymmetric Coupling for Multi-Network Heterogeneous Vehicular Systems [8.454856509502733]
本稿では,異種マルチネットワーク車載アドホックネットワーク(VANET)のためのピンニング制御手法を提案する。
まず、単一および複数ネットワーク条件下でのピンニング制御戦略の安定性を証明し、厳密な理論基盤を確立する。
本理論に基づいて,最適ピンニングノードの選択に適した適応型遺伝的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-05T11:49:26Z) - Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - Predictive GAN-powered Multi-Objective Optimization for Hybrid Federated
Split Learning [56.125720497163684]
無線ネットワークにおけるハイブリッド・フェデレーション・スプリット・ラーニング・フレームワークを提案する。
ラベル共有のないモデル分割のための並列計算方式を設計し,提案方式が収束速度に与える影響を理論的に解析する。
論文 参考訳(メタデータ) (2022-09-02T10:29:56Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Self-Organizing mmWave MIMO Cell-Free Networks With Hybrid Beamforming:
A Hierarchical DRL-Based Design [30.70798412145064]
セルフリー無線ネットワークにおいて、分散アクセスポイント(AP)は、同じ時間/周波数リソースを用いて、カバーエリア内のすべてのユーザ機器(UE)を共同で提供する。
深層学習(DRL)に基づく複数のネットワーク分割を提案する。
異なるセルフリーワーク間の干渉を設計するために,新しいハイブリッドビームストデジタルビームモデルを開発した。
論文 参考訳(メタデータ) (2021-03-17T03:31:52Z) - Large Scale Global Optimization Algorithms for IoT Networks: A
Comparative Study [29.884417706421218]
本研究では,無線センサネットワーク(WNS)の高次元での最適化について,分散検出の電力配分に着目して検討する。
大規模グローバル最適化(LGSO)問題に対処するために設計された4つのアルゴリズムを適用し比較する。
我々は,300次元,600次元,800次元の場合には,アルゴリズムの性能をいくつかの異なるケースで評価した。
論文 参考訳(メタデータ) (2021-02-22T18:59:22Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
大規模マルチインプット多重出力(MIMO)ネットワークにおいて最適なビームフォーマを見つけることはよく知られている問題である。
本稿では,この問題に対処するための新しい深層学習に基づく論文アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-08T12:48:06Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
論文 参考訳(メタデータ) (2020-02-17T07:54:39Z) - Multiple Access in Dynamic Cell-Free Networks: Outage Performance and
Deep Reinforcement Learning-Based Design [24.632250413917816]
将来のセルフリー(またはセルレス)無線ネットワークでは、地理的領域の多数のデバイスが同時に多数の分散アクセスポイント(AP)によって提供される。
我々は,多数のデバイスやAPが存在する場合に,ユーザの信号の共同処理の複雑さを低減するために,新しい動的セルフリーネットワークアーキテクチャを提案する。
システム設定では, DDPG-DDQN方式は, 網羅的な検索ベース設計により, 達成可能なレートの約78%を達成できることがわかった。
論文 参考訳(メタデータ) (2020-01-29T03:00:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。