Fixed points of nonnegative neural networks
- URL: http://arxiv.org/abs/2106.16239v9
- Date: Mon, 17 Jun 2024 12:06:39 GMT
- Title: Fixed points of nonnegative neural networks
- Authors: Tomasz J. Piotrowski, Renato L. G. Cavalcante, Mateusz Gabor,
- Abstract summary: We first show that nonnegative neural networks with nonnegative weights and biases can be recognized as monotonic and (weakly) scalable mappings.
We prove that the shape of the fixed point set of nonnegative neural networks with nonnegative weights and biases is an interval, which under mild conditions degenerates to a point.
- Score: 6.7113569772720565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use fixed point theory to analyze nonnegative neural networks, which we define as neural networks that map nonnegative vectors to nonnegative vectors. We first show that nonnegative neural networks with nonnegative weights and biases can be recognized as monotonic and (weakly) scalable mappings within the framework of nonlinear Perron-Frobenius theory. This fact enables us to provide conditions for the existence of fixed points of nonnegative neural networks having inputs and outputs of the same dimension, and these conditions are weaker than those recently obtained using arguments in convex analysis. Furthermore, we prove that the shape of the fixed point set of nonnegative neural networks with nonnegative weights and biases is an interval, which under mild conditions degenerates to a point. These results are then used to obtain the existence of fixed points of more general nonnegative neural networks. From a practical perspective, our results contribute to the understanding of the behavior of autoencoders, and we also offer valuable mathematical machinery for future developments in deep equilibrium models.
Related papers
- Non Commutative Convolutional Signal Models in Neural Networks:
Stability to Small Deformations [111.27636893711055]
We study the filtering and stability properties of non commutative convolutional filters.
Our results have direct implications for group neural networks, multigraph neural networks and quaternion neural networks.
arXiv Detail & Related papers (2023-10-05T20:27:22Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
We establish algorithm-dependent risk bounds for learning two-layer ReLU convolutional neural networks with label-flipping noise.
We show that, under mild conditions, the neural network trained by gradient descent can achieve near-zero training loss and Bayes optimal test risk.
arXiv Detail & Related papers (2023-03-07T18:59:38Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Fixed Points of Cone Mapping with the Application to Neural Networks [1.0660480034605242]
We derive conditions for the existence of fixed points of cone mappings without assuming scalability of functions.
In the case of specific non-negative data, it cannot be said that if the mapping is non-negative, it has only non-negative weights.
arXiv Detail & Related papers (2022-07-20T14:43:45Z) - Variational Neural Networks [88.24021148516319]
We propose a method for uncertainty estimation in neural networks called Variational Neural Network (VNN)
VNN generates parameters for the output distribution of a layer by transforming its inputs with learnable sub-layers.
In uncertainty quality estimation experiments, we show that VNNs achieve better uncertainty quality than Monte Carlo Dropout or Bayes By Backpropagation methods.
arXiv Detail & Related papers (2022-07-04T15:41:02Z) - Consistency of Neural Networks with Regularization [0.0]
This paper proposes the general framework of neural networks with regularization and prove its consistency.
Two types of activation functions: hyperbolic function(Tanh) and rectified linear unit(ReLU) have been taken into consideration.
arXiv Detail & Related papers (2022-06-22T23:33:39Z) - Benign Overfitting in Two-layer Convolutional Neural Networks [90.75603889605043]
We study the benign overfitting phenomenon in training a two-layer convolutional neural network (CNN)
We show that when the signal-to-noise ratio satisfies a certain condition, a two-layer CNN trained by gradient descent can achieve arbitrarily small training and test loss.
On the other hand, when this condition does not hold, overfitting becomes harmful and the obtained CNN can only achieve constant level test loss.
arXiv Detail & Related papers (2022-02-14T07:45:51Z) - Convolutional Filtering and Neural Networks with Non Commutative
Algebras [153.20329791008095]
We study the generalization of non commutative convolutional neural networks.
We show that non commutative convolutional architectures can be stable to deformations on the space of operators.
arXiv Detail & Related papers (2021-08-23T04:22:58Z) - The Compact Support Neural Network [6.47243430672461]
We present a neuron generalization that has the standard dot-product-based neuron and the RBF neuron as two extreme cases of a shape parameter.
We show how to avoid difficulties in training a neural network with such neurons, by starting with a trained standard neural network and gradually increasing the shape parameter to the desired value.
arXiv Detail & Related papers (2021-04-01T06:08:09Z) - Neural Networks with Recurrent Generative Feedback [61.90658210112138]
We instantiate this design on convolutional neural networks (CNNs)
In the experiments, CNN-F shows considerably improved adversarial robustness over conventional feedforward CNNs on standard benchmarks.
arXiv Detail & Related papers (2020-07-17T19:32:48Z) - Bayesian Neural Networks [0.0]
We show how errors in prediction by neural networks can be obtained in principle, and provide the two favoured methods for characterising these errors.
We will also describe how both of these methods have substantial pitfalls when put into practice.
arXiv Detail & Related papers (2020-06-02T09:43:00Z) - Avoiding Spurious Local Minima in Deep Quadratic Networks [0.0]
We characterize the landscape of the mean squared nonlinear error for networks with neural activation functions.
We prove that deepized neural networks with quadratic activations benefit from similar landscape properties.
arXiv Detail & Related papers (2019-12-31T22:31:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.