論文の概要: Using AntiPatterns to avoid MLOps Mistakes
- arxiv url: http://arxiv.org/abs/2107.00079v1
- Date: Wed, 30 Jun 2021 20:00:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-03 03:53:53.060962
- Title: Using AntiPatterns to avoid MLOps Mistakes
- Title(参考訳): AntiPatternsを使ってMLOpsのミスを避ける
- Authors: Nikhil Muralidhar, Sathappah Muthiah, Patrick Butler, Manish Jain, Yu
Yu, Katy Burne, Weipeng Li, David Jones, Prakash Arunachalam, Hays 'Skip'
McCormick, Naren Ramakrishnan
- Abstract要約: アンチパターンは、欠陥のあるプラクティスや方法論を記述するための語彙を提供する。
いくつかのアンチパターンは技術的な誤りによるものであり、他のパターンは周囲の文脈について十分な知識を持っていないためである。
アンチパターンのカタログ化に加えて、ソリューション、ベストプラクティス、MLOps成熟に向けた今後の方向性について説明します。
- 参考スコア(独自算出の注目度): 14.688848347037375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe lessons learned from developing and deploying machine learning
models at scale across the enterprise in a range of financial analytics
applications. These lessons are presented in the form of antipatterns. Just as
design patterns codify best software engineering practices, antipatterns
provide a vocabulary to describe defective practices and methodologies. Here we
catalog and document numerous antipatterns in financial ML operations (MLOps).
Some antipatterns are due to technical errors, while others are due to not
having sufficient knowledge of the surrounding context in which ML results are
used. By providing a common vocabulary to discuss these situations, our intent
is that antipatterns will support better documentation of issues, rapid
communication between stakeholders, and faster resolution of problems. In
addition to cataloging antipatterns, we describe solutions, best practices, and
future directions toward MLOps maturity.
- Abstract(参考訳): さまざまな財務分析アプリケーションにおいて、企業全体で機械学習モデルの開発とデプロイから学んだ教訓について説明する。
これらの教訓はアンチパターンの形で示される。
設計パターンがソフトウェアエンジニアリングのベストプラクティスを体系化するのと同じように、アンチパターンは欠陥のあるプラクティスや方法論を記述するための語彙を提供する。
ここでは、金融MLオペレーション(MLOps)における多数のアンチパターンをカタログ化し、文書化します。
いくつかのアンチパターンは技術的なエラーによるものだが、ml結果が使用される周囲のコンテキストに関する十分な知識が不足しているものもある。
これらの状況について議論するための共通の語彙を提供することで、アンチパターンは問題に関するより良いドキュメンテーション、ステークホルダ間の迅速なコミュニケーション、問題の迅速な解決をサポートすることを意図しています。
アンチパターンのカタログ化に加えて、ソリューションやベストプラクティス、mlops成熟への今後の方向性についても述べています。
関連論文リスト
- Breaking Chains: Unraveling the Links in Multi-Hop Knowledge Unlearning [38.03304773600225]
大きな言語モデル(LLM)は、しばしば個人または著作権のあるデータを含む巨大な情報ストアとして機能し、それらをゼロから再トレーニングすることは不可能である。
MUNCHは、マルチホップクエリをサブクエストに分解し、最終的な意思決定における未学習モデルの不確実性を活用する、単純な不確実性に基づくアプローチである。
論文 参考訳(メタデータ) (2024-10-17T07:00:15Z) - EmbedLLM: Learning Compact Representations of Large Language Models [28.49433308281983]
大規模言語モデルのコンパクトなベクトル表現を学習するためのフレームワークである EmbedLLM を提案する。
このような埋め込みを学習するためのエンコーダ-デコーダアプローチと,その有効性を評価するための体系的なフレームワークを導入する。
EmbedLLMはモデルルーティングにおいて,精度とレイテンシの両方において,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-03T05:43:24Z) - Sparse Autoencoders Reveal Temporal Difference Learning in Large Language Models [7.115323364355489]
インコンテキスト学習(In-context learning)は、入力プロンプトのいくつかの例に基づいて適応する能力であり、大きな言語モデル(LLM)のユビキタスな特徴である。
最初に、Llamaが$70$Bで、コンテキスト内で単純なRL問題を解くことができることを示す。
次に、スパースオートエンコーダ(SAE)を用いてLlamaの残差ストリームを分析し、時間差(TD)誤差によく一致する表現を求める。
論文 参考訳(メタデータ) (2024-10-02T06:51:12Z) - LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
LLMs-as-Instructors"フレームワークは、より小さなターゲットモデルのトレーニングを自律的に強化する。
このフレームワークは、"Learning from Errors"理論にインスパイアされ、ターゲットモデル内の特定のエラーを注意深く分析するインストラクターLLMを使用している。
本フレームワークでは,適切なトレーニングデータに対する誤応答のみに焦点を当てた「エラーからの学習」と,比較学習を用いて誤りの深い理解を行う「コントラストによるエラーからの学習」という2つの戦略を実装している。
論文 参考訳(メタデータ) (2024-06-29T17:16:04Z) - Pattern-Aware Chain-of-Thought Prompting in Large Language Models [26.641713417293538]
CoT(Chain-of- Thought)は言語モデルに複雑な多段階推論を誘導する。
このようなタスクにおいて、基礎となる推論パターンがより重要な役割を果たすことを示す。
本稿では,デモパターンの多様性を考慮したプロンプト手法であるPattern-Aware CoTを提案する。
論文 参考訳(メタデータ) (2024-04-23T07:50:00Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
大規模言語モデル(LLM)は、様々なドメインでタスクを処理するための実現可能なソリューションとなっている。
本稿では、コンテンツモデレーションのためにプライベートにデプロイ可能なLLMモデルを微調整する方法を紹介する。
論文 参考訳(メタデータ) (2023-10-05T09:09:44Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - RAVEN: In-Context Learning with Retrieval-Augmented Encoder-Decoder Language Models [57.12888828853409]
RAVENは検索強化されたマスク付き言語モデリングとプレフィックス言語モデリングを組み合わせたモデルである。
フュージョン・イン・コンテキスト・ラーニング(Fusion-in-Context Learning)により、追加のトレーニングを必要とせずに、より多くのコンテキスト内サンプルを利用できる。
本研究は,テキスト内学習のためのエンコーダ・デコーダ言語モデルの構築の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2023-08-15T17:59:18Z) - Automatically Correcting Large Language Models: Surveying the landscape
of diverse self-correction strategies [104.32199881187607]
大規模言語モデル(LLM)は、幅広いNLPタスクで顕著な性能を示した。
これらの欠陥を正すための有望なアプローチは自己補正であり、LLM自体が自身の出力で問題を修正するために誘導される。
本稿では,この新技術について概観する。
論文 参考訳(メタデータ) (2023-08-06T18:38:52Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z) - Pattern Learning for Detecting Defect Reports and Improvement Requests
in App Reviews [4.460358746823561]
本研究では、レビューを欠陥報告と改善の要求として分類することで、この行動可能な洞察の欠如を狙う新しいアプローチに従う。
我々は,遺伝的プログラミングを通じて語彙・意味パターンを学習できる教師付きシステムを採用している。
自動学習パターンは手作業で生成したパターンよりも優れており、生成可能であることを示す。
論文 参考訳(メタデータ) (2020-04-19T08:13:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。