論文の概要: Scalable Certified Segmentation via Randomized Smoothing
- arxiv url: http://arxiv.org/abs/2107.00228v1
- Date: Thu, 1 Jul 2021 05:52:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-03 00:31:51.510015
- Title: Scalable Certified Segmentation via Randomized Smoothing
- Title(参考訳): ランダム化平滑化によるスケーラブル認証セグメンテーション
- Authors: Marc Fischer, Maximilian Baader, Martin Vechev
- Abstract要約: ランダムな平滑化に基づく画像と点雲のセグメンテーションのための新しい認証手法を提案する。
提案アルゴリズムは,実世界のセグメンテーションタスクにおいて,競争精度と認証保証を初めて達成できることを示す。
- 参考スコア(独自算出の注目度): 9.775834440292487
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new certification method for image and point cloud segmentation
based on randomized smoothing. The method leverages a novel scalable algorithm
for prediction and certification that correctly accounts for multiple testing,
necessary for ensuring statistical guarantees. The key to our approach is
reliance on established multiple-testing correction mechanisms as well as the
ability to abstain from classifying single pixels or points while still
robustly segmenting the overall input. Our experimental evaluation on synthetic
data and challenging datasets, such as Pascal Context, Cityscapes, and
ShapeNet, shows that our algorithm can achieve, for the first time, competitive
accuracy and certification guarantees on real-world segmentation tasks. We
provide an implementation at https://github.com/eth-sri/segmentation-smoothing.
- Abstract(参考訳): ランダムな平滑化に基づく画像と点雲のセグメンテーションのための新しい認証手法を提案する。
この手法は、統計的な保証を確保するために必要な複数のテストを正確に考慮した予測と認証のために、新しいスケーラブルなアルゴリズムを活用する。
我々のアプローチの鍵は、確立された多重テストの修正機構と、全体的な入力をロバストに分割しながら単一のピクセルまたはポイントの分類を控える能力に依存することです。
合成データやpascal context,cityscapes,shapenetなどの難解なデータセットについて実験的評価を行った結果,実世界のセグメンテーションタスクにおいて,アルゴリズムが初めて,競合精度と認証保証を達成できることが判明した。
実装はhttps://github.com/eth-sri/segmentation-smoothingで行います。
関連論文リスト
- Adaptive Hierarchical Certification for Segmentation using Randomized Smoothing [87.48628403354351]
機械学習の認証は、特定の条件下では、敵対的なサンプルが特定の範囲内でモデルを回避できないことを証明している。
セグメンテーションの一般的な認証方法は、平らな粒度のクラスを使い、モデルの不確実性による高い断続率をもたらす。
本稿では,複数レベルの階層内で画素を認証し,不安定なコンポーネントに対して粗いレベルに適応的に認証を緩和する,新しい,より実用的な設定を提案する。
論文 参考訳(メタデータ) (2024-02-13T11:59:43Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - CAFS: Class Adaptive Framework for Semi-Supervised Semantic Segmentation [5.484296906525601]
半教師付きセマンティックセグメンテーションは、いくつかのラベル付きサンプルと多数のラベルなし画像を使用して、ピクセルを特定のクラスに分類するモデルを学ぶ。
半教師付きセマンティックセグメンテーション(CAFS)のためのクラス適応型セミスーパービジョンフレームワークを提案する。
CAFSはラベル付きデータセットに検証セットを構築し、各クラスの校正性能を活用する。
論文 参考訳(メタデータ) (2023-03-21T05:56:53Z) - Smooth-Reduce: Leveraging Patches for Improved Certified Robustness [100.28947222215463]
本研究では,Smooth-Reduce の学習自由な修正スムース化手法を提案する。
提案アルゴリズムは,入力画像から抽出した重なり合うパッチを分類し,予測ロジットを集約して,入力周辺の半径が大きいことを証明する。
我々は,このような証明書の理論的保証を提供し,他のランダムな平滑化手法に対する顕著な改善を実証的に示す。
論文 参考訳(メタデータ) (2022-05-12T15:26:20Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
分割雑音を伴う非加法的決定論的平滑化法(dssn)を提案する。
一様加法平滑化とは対照的に、ssn認証は無作為なノイズコンポーネントを独立に必要としない。
これは、規範ベースの敵対的脅威モデルに対して決定論的「ランダム化平滑化」を提供する最初の仕事である。
論文 参考訳(メタデータ) (2021-03-17T21:49:53Z) - Data Dependent Randomized Smoothing [127.34833801660233]
データ依存フレームワークは、3つのランダムな平滑化アプローチにシームレスに組み込むことができます。
CIFAR10とImageNetで0.5の半径の最強ベースラインの認定精度よりも9%と6%の改善が得られています。
論文 参考訳(メタデータ) (2020-12-08T10:53:11Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。