論文の概要: Towards Utilitarian Combinatorial Assignment with Deep Neural Networks
and Heuristic Algorithms
- arxiv url: http://arxiv.org/abs/2107.00317v1
- Date: Thu, 1 Jul 2021 09:15:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:48:03.494086
- Title: Towards Utilitarian Combinatorial Assignment with Deep Neural Networks
and Heuristic Algorithms
- Title(参考訳): 深層ニューラルネットワークとヒューリスティックアルゴリズムを用いた実用的組合せ割り当てに向けて
- Authors: Fredrik Pr\"antare, Mattias Tiger, David Bergstr\"om, Herman
Appelgren, Fredrik Heintz
- Abstract要約: 本稿では,ディープニューラルネットワークを用いた汎用アルゴリズムによる実用的課題の導出に関する予備研究について述べる。
以上の結果から,本手法が将来的な構築手法となる可能性が示唆された。
- 参考スコア(独自算出の注目度): 2.362412515574206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents preliminary work on using deep neural networks to guide
general-purpose heuristic algorithms for performing utilitarian combinatorial
assignment. In more detail, we use deep learning in an attempt to produce
heuristics that can be used together with e.g., search algorithms to generate
feasible solutions of higher quality more quickly. Our results indicate that
our approach could be a promising future method for constructing such
heuristics.
- Abstract(参考訳): 本稿では,ニューラルネットワークを用いた汎用ヒューリスティックアルゴリズムの実用化に向けた予備研究について述べる。
さらに詳しくは、ディープラーニングを使用して、検索アルゴリズムと一緒に使用できるヒューリスティックを生成して、高品質な実現可能なソリューションをより早く生成します。
以上の結果から,本手法は将来的なヒューリスティックな手法である可能性が示唆された。
関連論文リスト
- Graph Convolutional Branch and Bound [1.8966938152549224]
本稿では,最適化パイプラインにおけるディープラーニングモデルの有効性を示す。
この文脈では、ニューラルネットワークを利用して、価値ある情報を素早く取得することができる。
論文 参考訳(メタデータ) (2024-06-05T09:42:43Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - Neural Algorithmic Reasoning for Combinatorial Optimisation [20.36694807847833]
ニューラル推論の最近の進歩を活用して,CO問題の学習を改善することを提案する。
私たちは、COインスタンスでトレーニングする前に、関連するアルゴリズムでニューラルネットワークを事前トレーニングすることを提案します。
以上の結果から,この学習装置を用いることで,非アルゴリズム的情報深層学習モデルよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2023-05-18T13:59:02Z) - Dual Algorithmic Reasoning [9.701208207491879]
本稿では,基礎となるアルゴリズム問題の双対性を利用してアルゴリズムを学習することを提案する。
アルゴリズム学習における最適化問題の2つの定義を同時に学習することで、より良い学習が可能になることを実証する。
次に、難易度の高い脳血管分類タスクにデプロイすることで、二元アルゴリズム推論の現実的な実用性を検証する。
論文 参考訳(メタデータ) (2023-02-09T08:46:23Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Learning with Differentiable Algorithms [6.47243430672461]
この論文は、古典的なアルゴリズムとニューラルネットワークのような機械学習システムを組み合わせることを探求している。
この論文はアルゴリズムの監督という概念を定式化し、ニューラルネットワークがアルゴリズムから、あるいは、アルゴリズムと連動して学ぶことを可能にする。
さらに、この論文では、微分可能なソートネットワーク、微分可能なソートゲート、微分可能な論理ゲートネットワークなど、微分可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-01T17:30:00Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Learning Structures for Deep Neural Networks [99.8331363309895]
我々は,情報理論に根ざし,計算神経科学に発達した効率的な符号化原理を採用することを提案する。
スパース符号化は出力信号のエントロピーを効果的に最大化できることを示す。
公開画像分類データセットを用いた実験により,提案アルゴリズムでスクラッチから学習した構造を用いて,最も優れた専門家設計構造に匹敵する分類精度が得られることを示した。
論文 参考訳(メタデータ) (2021-05-27T12:27:24Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
本稿では,ニューラルプログラム誘導の枠組みを強く一般化する効率的なアルゴリズムを学習する問題について検討する。
ニューラルネットワークの入力/出力インターフェースを慎重に設計し、模倣することで、任意の入力サイズに対して正しい結果を生成するモデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-07-07T17:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。