論文の概要: Learning Branching Heuristics from Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2211.14405v1
- Date: Sat, 26 Nov 2022 00:01:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 17:45:58.606986
- Title: Learning Branching Heuristics from Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークからの学習分岐ヒューリスティック
- Authors: Congsong Zhang and Yong Gao and James Nastos
- Abstract要約: まず,確率論的手法を用いて設計した新しいグラフニューラルネットワーク(GNN)モデルを提案する。
我々のアプローチは、AIで使用される古典的なバックトラッキングアルゴリズムの強化にGNNを適用する新しい方法を導入する。
- 参考スコア(独自算出の注目度): 1.4660170768702356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backtracking has been widely used for solving problems in artificial
intelligence (AI), including constraint satisfaction problems and combinatorial
optimization problems. Good branching heuristics can efficiently improve the
performance of backtracking by helping prune the search space and leading the
search to the most promising direction. In this paper, we first propose a new
graph neural network (GNN) model designed using the probabilistic method. From
the GNN model, we introduce an approach to learn a branching heuristic for
combinatorial optimization problems. In particular, our GNN model learns
appropriate probability distributions on vertices in given graphs from which
the branching heuristic is extracted and used in a backtracking search. Our
experimental results for the (minimum) dominating-clique problem show that this
learned branching heuristic performs better than the minimum-remaining-values
heuristic in terms of the number of branches of the whole search tree. Our
approach introduces a new way of applying GNNs towards enhancing the classical
backtracking algorithm used in AI.
- Abstract(参考訳): バックトラックは、制約満足度問題や組合せ最適化問題を含む人工知能(AI)の問題を解決するために広く用いられている。
よい分岐ヒューリスティックスは、探索空間を創り出し、最も有望な方向に導くことで、バックトラックの性能を効率よく向上させることができる。
本稿では,確率論的手法を用いて設計された新しいグラフニューラルネットワーク(GNN)モデルを提案する。
gnnモデルを用いて,組合せ最適化問題に対して分岐ヒューリスティックを学ぶ手法を提案する。
特に,gnnモデルでは,分岐ヒューリスティックを抽出してバックトラック探索に用いるグラフにおいて,頂点上の適切な確率分布を学習する。
最小のドミネーション・クライク問題に対する実験の結果から,この学習された分岐ヒューリスティックは,探索木全体の分岐数において,最小保存値ヒューリスティックよりも優れた性能を示すことがわかった。
我々のアプローチは、AIで使用される古典的なバックトラッキングアルゴリズムの強化にGNNを適用する新しい方法を導入する。
関連論文リスト
- Assessing and Enhancing Graph Neural Networks for Combinatorial Optimization: Novel Approaches and Application in Maximum Independent Set Problems [0.0]
Graph Neural Networks (GNNs)は、コンビネーション最適化(CO)問題の解決における研究者の約束を示す。
本研究では,最大独立集合(MIS)問題の解法におけるGNNの有効性について検討した。
論文 参考訳(メタデータ) (2024-11-06T09:12:31Z) - Enhancing GNNs Performance on Combinatorial Optimization by Recurrent Feature Update [0.09986418756990156]
本稿では,組合せ最適化(CO)問題を効率よく解くために,GNNのパワーを活用して,QRF-GNNと呼ぶ新しいアルゴリズムを提案する。
QUBO緩和による損失関数の最小化による教師なし学習に依存している。
実験の結果、QRF-GNNは既存の学習ベースアプローチを大幅に上回り、最先端の手法に匹敵することがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:34:35Z) - LinSATNet: The Positive Linear Satisfiability Neural Networks [116.65291739666303]
本稿では,ニューラルネットワークに人気の高い正の線形満足度を導入する方法について検討する。
本稿では,古典的なシンクホーンアルゴリズムを拡張し,複数の辺分布の集合を共同で符号化する,最初の微分可能満足層を提案する。
論文 参考訳(メタデータ) (2024-07-18T22:05:21Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
最適化問題に取り組むための新たな戦略は、従来のアルゴリズムに代わるグラフニューラルネットワーク(GNN)の採用である。
GNNや従来のアルゴリズムソルバがCOの領域で人気が高まっているにもかかわらず、それらの統合利用とエンドツーエンドフレームワークにおけるそれらの相関について限定的な研究がなされている。
我々は、GNNを利用してCO問題に補助的なサポートで対処する決定に焦点を当てたフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-05T22:52:27Z) - Graph Convolutional Branch and Bound [1.8966938152549224]
本稿では,最適化パイプラインにおけるディープラーニングモデルの有効性を示す。
この文脈では、ニューラルネットワークを利用して、価値ある情報を素早く取得することができる。
論文 参考訳(メタデータ) (2024-06-05T09:42:43Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
ニューラルネットワーク推論タスクのOOD一般化について検討する。
目標は、ディープニューラルネットワークを使用して入出力ペアからアルゴリズムを学ぶことである。
論文 参考訳(メタデータ) (2022-11-01T18:33:20Z) - Inability of a graph neural network heuristic to outperform greedy
algorithms in solving combinatorial optimization problems like Max-Cut [0.0]
Nature Machine Intelligence 4, 367 (2022) において、Schuetzらは、様々な古典的なNPハード最適化問題を解決するためにニューラルネットワーク(GNN)を使用するスキームを提供している。
ネットワークがサンプルインスタンス上でどのようにトレーニングされているかを説明し、その結果のGNNは、広く使われているテクニックを適用して、その成功の可能性を判断する。
しかし, より綿密な検査により, このGNNの報告結果は勾配降下率よりもわずかに優れており, グリーディアルゴリズムにより性能が向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-02T20:50:33Z) - GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed
Graph Neural Networks [68.61934077627085]
本稿では,グラフ埋め込みを学習可能なGNNと互換性のあるモデリングフレームワークであるGNNRankを紹介する。
既存の手法と比較して,我々の手法が競争力があり,しばしば優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-02-01T04:19:50Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから実際に学習する上で、近年大きな進歩を遂げている。
回帰問題と二項分類問題の両方に隠れ層を持つGNNの理論的に基底的な一般化可能性解析を行う。
論文 参考訳(メタデータ) (2020-06-25T00:45:52Z) - GLSearch: Maximum Common Subgraph Detection via Learning to Search [33.9052190473029]
検索モデルに対するグラフニューラルネットワーク(GNN)に基づく学習手法であるGLSearchを提案する。
このモデルでは2つの入力グラフから1対のノードを選択して一度に拡張する。
我々のGLSearchは、グラフ上の制約で他の多くの問題を解決するために拡張できる可能性がある。
論文 参考訳(メタデータ) (2020-02-08T10:03:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。