Drone swarm patrolling with uneven coverage requirements
- URL: http://arxiv.org/abs/2107.00362v1
- Date: Thu, 1 Jul 2021 10:58:57 GMT
- Title: Drone swarm patrolling with uneven coverage requirements
- Authors: Claudio Piciarelli and Gian Luca Foresti
- Abstract summary: In this paper, we focus on visual coverage optimization with drone-mounted camera sensors.
We model these coverage requirements with relevance maps and propose a deep reinforcement learning algorithm to guide the swarm.
- Score: 22.475492500154573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Swarms of drones are being more and more used in many practical scenarios,
such as surveillance, environmental monitoring, search and rescue in
hardly-accessible areas, etc.. While a single drone can be guided by a human
operator, the deployment of a swarm of multiple drones requires proper
algorithms for automatic task-oriented control. In this paper, we focus on
visual coverage optimization with drone-mounted camera sensors. In particular,
we consider the specific case in which the coverage requirements are uneven,
meaning that different parts of the environment have different coverage
priorities. We model these coverage requirements with relevance maps and
propose a deep reinforcement learning algorithm to guide the swarm. The paper
first defines a proper learning model for a single drone, and then extends it
to the case of multiple drones both with greedy and cooperative strategies.
Experimental results show the performance of the proposed method, also compared
with a standard patrolling algorithm.
Related papers
- Drone-type-Set: Drone types detection benchmark for drone detection and tracking [0.6294091730968154]
In this paper, we provide a dataset of various drones as well as a comparison of recognized object detection models.
The experimental results of different models are provided along with a description of each method.
arXiv Detail & Related papers (2024-05-16T18:56:46Z) - Unauthorized Drone Detection: Experiments and Prototypes [0.8294692832460543]
We present a novel encryption-based drone detection scheme that uses a two-stage verification of the drone's received signal strength indicator ( RSSI) and the encryption key generated from the drone's position coordinates.
arXiv Detail & Related papers (2022-12-02T20:43:29Z) - A Search and Detection Autonomous Drone System: from Design to
Implementation [7.760962597460447]
Search efficiency in terms of the amount of time spent to find the target is crucial in wildfire detection.
Two algorithms are proposed: Path planning and target detection.
It is shown that the proposed algorithm significantly decreases the average time of the mission.
arXiv Detail & Related papers (2022-11-29T01:44:29Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
Existing systems often require hand-engineered components for state estimation, planning, and control.
This paper tackles the vision-based autonomous-drone-racing problem by learning deep sensorimotor policies.
arXiv Detail & Related papers (2022-10-26T19:03:17Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - A dataset for multi-sensor drone detection [67.75999072448555]
The use of small and remotely controlled unmanned aerial vehicles (UAVs) has increased in recent years.
Most studies on drone detection fail to specify the type of acquisition device, the drone type, the detection range, or the dataset.
We contribute with an annotated multi-sensor database for drone detection that includes infrared and visible videos and audio files.
arXiv Detail & Related papers (2021-11-02T20:52:03Z) - Dogfight: Detecting Drones from Drones Videos [58.158988162743825]
This paper attempts to address the problem of drones detection from other flying drones variations.
The erratic movement of the source and target drones, small size, arbitrary shape, large intensity, and occlusion make this problem quite challenging.
To handle this, instead of using region-proposal based methods, we propose to use a two-stage segmentation-based approach.
arXiv Detail & Related papers (2021-03-31T17:43:31Z) - Vision-based Drone Flocking in Outdoor Environments [9.184987303791292]
This letter proposes a vision-based detection and tracking algorithm for drone swarms.
We employ a convolutional neural network to detect and localize nearby agents onboard the quadcopters in real-time.
We show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.
arXiv Detail & Related papers (2020-12-02T14:44:40Z) - Real-Time Drone Detection and Tracking With Visible, Thermal and
Acoustic Sensors [66.4525391417921]
A thermal infrared camera is shown to be a feasible solution to the drone detection task.
The detector performance as a function of the sensor-to-target distance is also investigated.
A novel video dataset containing 650 annotated infrared and visible videos of drones, birds, airplanes and helicopters is also presented.
arXiv Detail & Related papers (2020-07-14T23:06:42Z) - Multi-Drone based Single Object Tracking with Agent Sharing Network [74.8198920355117]
Multi-Drone single Object Tracking dataset consists of 92 groups of video clips with 113,918 high resolution frames taken by two drones and 63 groups of video clips with 145,875 high resolution frames taken by three drones.
Agent sharing network (ASNet) is proposed by self-supervised template sharing and view-aware fusion of the target from multiple drones.
arXiv Detail & Related papers (2020-03-16T03:27:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.