A quintet of quandaries: five no-go theorems for Relational Quantum
Mechanics
- URL: http://arxiv.org/abs/2107.00670v2
- Date: Wed, 1 Sep 2021 21:57:39 GMT
- Title: A quintet of quandaries: five no-go theorems for Relational Quantum
Mechanics
- Authors: Jacques L. Pienaar
- Abstract summary: RQM strives to uphold the completeness and universality of quantum theory.
Here we present five nogos that imply it cannot; something has to give way.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relational quantum mechanics (RQM) proposes an ontology of relations between
physical systems, where any system can serve as an `observer' and any physical
interaction between systems counts as a `measurement'. Quantities take unique
values spontaneously in these interactions, and the occurrence of such `quantum
events' is strictly relative to the observing system, making them `relative
facts'. The quantum state represents the objective information that one system
has about another by virtue of correlations between their physical variables.
The ontology of RQM thereby strives to uphold the universality and completeness
of quantum theory, while at the same time maintaining that the actualization of
each unique quantum event is a fundamental physical event. Can RQM sustain this
precarious balancing act? Here we present five no-go theorems that imply it
cannot; something has to give way.
Related papers
- Universality in driven open quantum matter [0.0]
Universality is a powerful concept, which enables making qualitative and quantitative predictions in systems with extensively many degrees of freedom.
We focus here on its manifestations within a specific class of nonequilibrium stationary states: driven open quantum matter.
arXiv Detail & Related papers (2023-12-05T19:00:07Z) - A new indeterminacy-based quantum theory [0.0]
I propose a novel interpretation of quantum theory, which I will call Environmental Determinacy-based (EnDQT)
Unlike theories such as spontaneous collapse theories, no modifications of the fundamental equations of quantum theory are required to establish when determinate values arise.
EnDQT may provide payoffs to other areas of physics and their foundations, such as cosmology.
arXiv Detail & Related papers (2023-10-06T04:05:38Z) - A Quantum Theory with Non-collapsing Measurements [0.0]
A collapse-free version of quantum theory is introduced to study the role of the projection postulate.
We assume "passive" measurements that do not update quantum states while measurement outcomes still occur probabilistically.
The resulting quantum-like theory has only one type of dynamics, namely unitary evolution.
arXiv Detail & Related papers (2023-03-23T16:32:29Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Semi-classical gravity phenomenology under the causal-conditional
quantum measurement prescription [9.842140146649346]
We study experimentally measurable signatures of SN theory under the causal-conditional prescription in an optomechanical system.
We find that quantum measurement can induce a classical correlation between two different optical fields via classical gravity.
arXiv Detail & Related papers (2022-07-13T05:09:55Z) - Quasiprobability fluctuation theorem behind the spread of quantum information [10.640597124563614]
We theoretically uncover the quantum fluctuation theorem behind the informational inequality.
The fluctuation theorem quantitatively predicts the statistics of the underlying quantum process.
We experimentally apply an interference-based method to measure the amplitudes composing the quasiprobability.
arXiv Detail & Related papers (2022-01-02T17:45:50Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - The Relational Interpretation of Quantum Physics [0.0]
RQM's technical core is the realisation that quantum transition amplitudes determine physical probabilities only when their arguments are facts relative to the same system.
RQM's technical core is the realisation that quantum transition amplitudes determine physical probabilities only when their arguments are facts relative to the same system.
arXiv Detail & Related papers (2021-09-19T17:22:25Z) - Qubits are not observers -- a no-go theorem [0.0]
The relational approach to quantum states asserts that the physical description of quantum systems is always relative to something or someone.
We show, in the form of a no-go theorem, that in RQM the physical description of a system relative to an observer cannot represent knowledge about the observer.
arXiv Detail & Related papers (2021-07-07T22:48:16Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.