On a modified quantum theory with objective quantum thermalization and spontaneous universal irreversibility
- URL: http://arxiv.org/abs/2504.16197v1
- Date: Tue, 22 Apr 2025 18:38:28 GMT
- Title: On a modified quantum theory with objective quantum thermalization and spontaneous universal irreversibility
- Authors: Aritro Mukherjee,
- Abstract summary: We argue that quantum theory is an effective theory and requires corrections to accurately describe systems approaching the thermodynamic limit.<n>We construct a minimal extension of quantum theory which is practically identical to quantum mechanics for microscopic systems.<n>We discuss the inclusion of objective collapse, thereby realizing a falsifiable theory of spontaneous universal irreversibility.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deterministic and time-reversal symmetric dynamics of isolated quantum systems is at odds with irreversible equilibration observed in generic thermodynamic systems. Standard approaches at a reconciliation are based on agent-specific restrictions on the space of observables or states and do not explain how a single macroscopic quantum system achieves equilibrium dynamically. We instead argue that quantum theory is an effective theory and requires corrections to accurately describe systems approaching the thermodynamic limit. We construct a minimal extension of quantum theory which is practically identical to quantum mechanics for microscopic systems, yet allows isolated, macroscopic systems to thermalize, with an objective notion of thermalization. A fluctuation-dissipation relation guarantees physicality constraints including norm preservation, energy conservation, no superluminal signalling and the emergence of microcanonical equilibrium statistics. We further discuss the inclusion of objective collapse, thereby realizing a falsifiable theory of spontaneous universal irreversibility which describes the quantum to classical crossover dynamics of macroscopic quantum systems. This model admits spontaneous symmetry breaking, quantum state reduction and objective quantum thermalization for individual systems while realizing an emergent hybrid, Born-Maxwell-Boltzmann-Gibbs-microcanonical distribution for ensembles.
Related papers
- Theory of Eigenstate Thermalisation [0.0]
The eigenstate thermalization hypothesis (ETH) of Deutsch and Srednicki suggests that this is possible because each eigenstate of the full quantum system acts as a thermal bath to its subsystems.
Our analysis provides a derivation of statistical mechanics which requires neither the concepts of ergodicity or typicality, nor that of entropy.
arXiv Detail & Related papers (2024-06-03T15:41:16Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Exact emergent quantum state designs from quantum chaotic dynamics [0.0]
We consider an ensemble of pure states supported on a small subsystem, generated from projective measurements of the remainder of the system in a local basis.
We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details.
Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics.
arXiv Detail & Related papers (2021-09-15T18:00:10Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Canonical density matrices from eigenstates of mixed systems [0.0]
We study the emergence of thermal states in the regime of a quantum analog of a mixed phase space.
Our system can be tuned by means of a single parameter from quantum integrability to quantum chaos.
arXiv Detail & Related papers (2021-03-10T10:19:05Z) - Subdiffusive dynamics and critical quantum correlations in a
disorder-free localized Kitaev honeycomb model out of equilibrium [0.0]
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories.
In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics.
arXiv Detail & Related papers (2020-12-10T15:39:17Z) - Thermalization of isolated quantum many-body system and the role of entanglement [1.0485739694839669]
We show that entanglement may act as a thermalizing agent, not universally but particularly.
In particular, we show that the expectation values of an observable in entangled energy eigenstates and its marginals are equivalent to the microcanonical and canonical averages of the observable.
arXiv Detail & Related papers (2020-09-22T09:37:38Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.