論文の概要: A Primer on Pretrained Multilingual Language Models
- arxiv url: http://arxiv.org/abs/2107.00676v1
- Date: Thu, 1 Jul 2021 18:01:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-05 12:55:35.530112
- Title: A Primer on Pretrained Multilingual Language Models
- Title(参考訳): 事前学習された多言語モデルにおけるプライマー
- Authors: Sumanth Doddapaneni, Gowtham Ramesh, Anoop Kunchukuttan, Pratyush
Kumar, Mitesh M. Khapra
- Abstract要約: MLLM(Multilingual Language Models)は、多数の言語に事前学習の能力をもたらすための実行可能な選択肢として登場した。
本報告では,MLLMに関する研究分野について概説する。
- 参考スコア(独自算出の注目度): 18.943173499882885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual Language Models (MLLMs) such as mBERT, XLM, XLM-R, \textit{etc.}
have emerged as a viable option for bringing the power of pretraining to a
large number of languages. Given their success in zero shot transfer learning,
there has emerged a large body of work in (i) building bigger MLLMs covering a
large number of languages (ii) creating exhaustive benchmarks covering a wider
variety of tasks and languages for evaluating MLLMs (iii) analysing the
performance of MLLMs on monolingual, zero shot crosslingual and bilingual tasks
(iv) understanding the universal language patterns (if any) learnt by MLLMs and
(v) augmenting the (often) limited capacity of MLLMs to improve their
performance on seen or even unseen languages. In this survey, we review the
existing literature covering the above broad areas of research pertaining to
MLLMs. Based on our survey, we recommend some promising directions of future
research.
- Abstract(参考訳): mBERT, XLM, XLM-R, \textit{etc.} のような多言語言語モデル(MLLM)
多くの言語に事前訓練の力を もたらすための選択肢として現れました
Given their success in zero shot transfer learning, there has emerged a large body of work in (i) building bigger MLLMs covering a large number of languages (ii) creating exhaustive benchmarks covering a wider variety of tasks and languages for evaluating MLLMs (iii) analysing the performance of MLLMs on monolingual, zero shot crosslingual and bilingual tasks (iv) understanding the universal language patterns (if any) learnt by MLLMs and (v) augmenting the (often) limited capacity of MLLMs to improve their performance on seen or even unseen languages.
本調査では,MLLMに関する研究領域を網羅する文献について概説する。
本調査に基づき,今後の研究の今後の方向性を示唆する。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Pruning Multilingual Large Language Models for Multilingual Inference [28.36717615166238]
本研究では,非英語言語におけるMLLMのゼロショット性能を向上させる方法について検討する。
まず、翻訳を行う際のMLLMの挙動を分析し、翻訳過程において重要な役割を果たす大きな特徴があることを明らかにする。
論文 参考訳(メタデータ) (2024-09-25T13:15:50Z) - A Survey of Large Language Models for European Languages [4.328283741894074]
大規模言語モデル(LLM)は、多岐にわたる自然言語処理における高い性能のため、大きな注目を集めている。
LLaMA, PaLM, GPT, MoE など LLM ファミリーの概要を報告する。
大規模言語モデルの事前学習に使用される共通単言語および多言語データセットの包括的要約を提供する。
論文 参考訳(メタデータ) (2024-08-27T13:10:05Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias [5.104497013562654]
本稿では,MLLMの進化,鍵技術,多言語能力について概説する。
我々は、MLLMのトレーニングや下流タスクに適した多言語データセットに広く利用されている多言語コーパスについて検討する。
本稿では,MLLMのカテゴリと評価指標を含むバイアスについて論じ,既存のデバイアス手法を要約する。
論文 参考訳(メタデータ) (2024-04-01T05:13:56Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。