論文の概要: A\c{C}AI: Ascent Similarity Caching with Approximate Indexes
- arxiv url: http://arxiv.org/abs/2107.00957v1
- Date: Fri, 2 Jul 2021 10:40:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-05 20:01:44.823676
- Title: A\c{C}AI: Ascent Similarity Caching with Approximate Indexes
- Title(参考訳): A\c{C}AI: アクセント類似性キャッシュと近似指標
- Authors: Tareq Si Salem, Giovanni Neglia, Damiano Carra
- Abstract要約: 類似性検索はマルチメディア検索システムやレコメンデーションシステムにおいて重要な操作であり、将来の機械学習や拡張現実アプリケーションにおいても重要な役割を果たす。
AcCAIは、 (i) カタログ全体の(近似)インデックスを使用して、どのオブジェクトをローカルに提供し、どのオブジェクトをリモートサーバから取得するかを判断し、 (ii) 要求プロセスが統計的規則性を持っていなくても、ローカルオブジェクトの集合を強力な保証で更新するミラー上昇アルゴリズムを用いて、新しい類似性キャッシュポリシーである。
- 参考スコア(独自算出の注目度): 12.450760567361531
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Similarity search is a key operation in multimedia retrieval systems and
recommender systems, and it will play an important role also for future machine
learning and augmented reality applications. When these systems need to serve
large objects with tight delay constraints, edge servers close to the end-user
can operate as similarity caches to speed up the retrieval. In this paper we
present A\c{C}AI, a new similarity caching policy which improves on the state
of the art by using (i) an (approximate) index for the whole catalog to decide
which objects to serve locally and which to retrieve from the remote server,
and (ii) a mirror ascent algorithm to update the set of local objects with
strong guarantees even when the request process does not exhibit any
statistical regularity.
- Abstract(参考訳): 類似性検索はマルチメディア検索システムやレコメンダシステムにおいて重要な操作であり、将来の機械学習や拡張現実アプリケーションにおいても重要な役割を果たす。
これらのシステムが大きなオブジェクトに厳しい遅延制約を課す必要がある場合、エンドユーザーに近いエッジサーバは類似性キャッシュとして動作し、検索を高速化することができる。
本稿では,a\c{c}aiについて述べる。a\c{c}aiは,(i)カタログ全体に対して(約)インデックスを使用して,どのオブジェクトをローカルに提供し,どのオブジェクトをリモートサーバから取得するかを判断し,(ii)リクエストプロセスが統計的に正規性を示さない場合でも,ローカルオブジェクトの集合を強い保証で更新するミラーアセンシングアルゴリズムを用いて,アートの状態を改善した新しい類似性キャッシングポリシである。
関連論文リスト
- Temporal-aware Hierarchical Mask Classification for Video Semantic
Segmentation [62.275143240798236]
ビデオセマンティックセグメンテーションデータセットは、ビデオ毎のカテゴリが限られている。
VSSトレーニング中に意味のある勾配更新を受けるために、クエリの10%未満がマッチする可能性がある。
提案手法は,最新のVSSベンチマークVSPWにおいてベルやホイッスルを使わずに,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-09-14T20:31:06Z) - A Learned Index for Exact Similarity Search in Metric Spaces [25.330353637669386]
LIMSは、学習したインデックスを構築するために、データクラスタリングとピボットベースのデータ変換技術を使用することが提案されている。
機械学習モデルはディスク上の各データレコードの位置を近似するために開発された。
実世界のデータセットと合成データセットに関する大規模な実験は、従来の指標と比較してLIMSの優位性を示している。
論文 参考訳(メタデータ) (2022-04-21T11:24:55Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
我々は、近似キーキャッシングと名付けた新しいキャッシングパラダイムを提案する。
近似キャッシュはDL推論の負荷を軽減し、システムのスループットを向上するが、近似誤差を導入する。
我々は古典的なLRUと理想的なキャッシュのキャッシュシステム性能を解析的にモデル化し、期待される性能のトレース駆動評価を行い、提案手法の利点を最先端の類似キャッシュと比較した。
論文 参考訳(メタデータ) (2021-12-13T13:49:11Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
現在のディープフェイク生成法では、偽画像やビデオの周波数スペクトルに識別的アーティファクトが残されている。
MD-CSDNetwork(MD-CSDNetwork)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T14:11:53Z) - CREPO: An Open Repository to Benchmark Credal Network Algorithms [78.79752265884109]
クレダルネットワークは、確率質量関数の集合であるクレダルに基づく不正確な確率的グラフィカルモデルである。
CREMAと呼ばれるJavaライブラリが最近リリースされ、クレダルネットワークをモデル化し、処理し、クエリする。
我々は,これらのモデル上での推論タスクの正確な結果とともに,合成クレダルネットワークのオープンリポジトリであるcrrepoを提案する。
論文 参考訳(メタデータ) (2021-05-10T07:31:59Z) - IRLI: Iterative Re-partitioning for Learning to Index [104.72641345738425]
分散環境でのロードバランスとスケーラビリティを維持しながら、高い精度を得る方法とのトレードオフが必要だ。
クエリ項目関連データから直接バケットを学習することで、アイテムを反復的に分割するIRLIと呼ばれる新しいアプローチを提案する。
我々は,irliが極めて自然な仮定の下で高い確率で正しい項目を検索し,優れた負荷分散を実現することを数学的に示す。
論文 参考訳(メタデータ) (2021-03-17T23:13:25Z) - Hierarchical Clustering using Auto-encoded Compact Representation for
Time-series Analysis [8.660029077292346]
本稿では,学習した時系列のコンパクト表現,オートエンコードコンパクトシーケンス(AECS),階層クラスタリングアプローチを組み合わせたクラスタの識別機構を提案する。
Sequence to Sequence(seq2seq)オートエンコーダと集約型階層クラスタリングに基づくRecurrent Neural Network(RNN)を利用するアルゴリズムです。
論文 参考訳(メタデータ) (2021-01-11T08:03:57Z) - Caching Placement and Resource Allocation for Cache-Enabling UAV NOMA
Networks [87.6031308969681]
本稿では,非直交多重アクセス(NOMA)をサポートした大規模アクセス機能を有する無人航空機(UAV)セルネットワークについて検討する。
コンテンツ配信遅延最小化のための長期キャッシュ配置と資源配分最適化問題をマルコフ決定プロセス(MDP)として定式化する。
そこで我々は,UAVがemphsoft $varepsilon$-greedy戦略を用いて行動の学習と選択を行い,行動と状態の最適な一致を探索する,Qラーニングに基づくキャッシュ配置とリソース割り当てアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-12T08:33:51Z) - AI-based Resource Allocation: Reinforcement Learning for Adaptive
Auto-scaling in Serverless Environments [0.0]
近年、サーバーレスコンピューティングはクラウドコンピューティングモデルの魅力的な新しいパラダイムとして現れています。
商用およびオープンソースのサーバレスコンピューティングプラットフォームに共通するアプローチは、ワークロードベースの自動スケーリングである。
本稿では、サーバーレスフレームワークにおける要求ベース自動スケーリングに対する強化学習アプローチの適用性について検討する。
論文 参考訳(メタデータ) (2020-05-29T06:18:39Z) - Evaluating Temporal Queries Over Video Feeds [25.04363138106074]
ビデオフィードにおけるオブジェクトとその共起に関する時間的クエリは、法執行機関からセキュリティ、安全に至るまで、多くのアプリケーションにとって関心がある。
本稿では,オブジェクト検出/追跡,中間データ生成,クエリ評価という3つのレイヤからなるアーキテクチャを提案する。
中間データ生成層における全ての検出対象を整理するために,MFSとSSGという2つの手法を提案する。
また、SSGに対して入力フレームを処理し、クエリ評価とは無関係なオブジェクトやフレームを効率よくプーンするState Traversal (ST)アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-03-02T14:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。