論文の概要: Molecular structure prediction based on graph convolutional networks
- arxiv url: http://arxiv.org/abs/2107.01035v1
- Date: Thu, 1 Jul 2021 08:34:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-05 12:45:59.990908
- Title: Molecular structure prediction based on graph convolutional networks
- Title(参考訳): グラフ畳み込みネットワークに基づく分子構造予測
- Authors: Xiaohui Lin, Yongquan Jiang, Yan Yang
- Abstract要約: グラフ畳み込みニューラルネットワーク(MSGCN)に基づく新しいモデル構造を提案する。
2つの原子間の距離を予測することによって分子構造を決定することができる。
- 参考スコア(独自算出の注目度): 3.4618015083384255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the important application of molecular structure in many fields,
calculation by experimental means or traditional density functional theory is
often time consuming. In view of this, a new Model Structure based on Graph
Convolutional Neural network (MSGCN) is proposed, which can determine the
molecular structure by predicting the distance between two atoms. In order to
verify the effect of MSGCN model, the model is compared with the method of
calculating molecular three-dimensional conformation in RDKit, and the result
is better than it. In addition, the distance predicted by the MSGCN model and
the distance calculated by the QM9 dataset were used to predict the molecular
properties, thus proving the effectiveness of the distance predicted by the
MSGCN model.
- Abstract(参考訳): 多くの分野における分子構造の重要な応用のため、実験的な方法や従来の密度汎関数理論による計算は時間を要することが多い。
そこで, グラフ畳み込みニューラルネットワーク(MSGCN)に基づく新しいモデル構造を提案し, 2つの原子間の距離を予測して分子構造を決定する。
msgcnモデルの有効性を検証するために、rdkitにおける分子3次元配座の計算法と比較し、結果より優れている。
さらに、MSGCNモデルにより予測される距離とQM9データセットによって計算される距離を用いて分子特性を予測し、MSGCNモデルにより予測される距離の有効性を実証した。
関連論文リスト
- Supervised Pretraining for Molecular Force Fields and Properties
Prediction [16.86839767858162]
本研究では, 原子電荷と3次元ジオメトリーを入力とし, 分子エネルギーをラベルとする8800万分子のデータセット上で, ニューラルネットワークを事前学習することを提案する。
実験により、スクラッチからのトレーニングと比較して、事前訓練されたモデルを微調整すると、7つの分子特性予測タスクと2つの力場タスクのパフォーマンスが大幅に向上することが示された。
論文 参考訳(メタデータ) (2022-11-23T08:36:50Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
グラフニューラルネットワーク(GNN)は、材料科学者からますます注目を集めている。
本研究では,DimeNet++と混合密度ネットワークに基づくマルチタスク(MT)アーキテクチャを構築し,その性能向上を図る。
論文 参考訳(メタデータ) (2022-09-15T13:52:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Edge Direction-invariant Graph Neural Networks for Molecular Dipole
Moments Prediction [0.0]
分子内の双極子モーメントを表現するための新しい埋め込み法を開発した。
開発モデルは、拡張されたジオメトリを持つ分子に対しても合理的に機能することを示す。
我々は,ab-initio計算に匹敵する精度で予測結果を大幅に改善する。
論文 参考訳(メタデータ) (2022-06-26T12:52:17Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Predicting Aqueous Solubility of Organic Molecules Using Deep Learning
Models with Varied Molecular Representations [3.10678679607547]
本研究の目的は、幅広い有機分子の溶解度を予測できる一般モデルを開発することである。
現在利用可能な最大の溶解度データセットを用いて、分子構造から溶解度を予測するディープラーニングモデルを構築した。
分子ディスクリプタを用いたモデルでは,GNNモデルでも優れた性能が得られた。
論文 参考訳(メタデータ) (2021-05-26T15:54:54Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Equivariant message passing for the prediction of tensorial properties
and molecular spectra [1.7188280334580197]
偏光性原子間相互作用ニューラルネットワーク(PaiNN)を提案する。
これを分子スペクトルのシミュレーションに適用し,電子構造基準と比較して4-5桁の高速化を実現した。
論文 参考訳(メタデータ) (2021-02-05T13:00:12Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
我々はOrbNetモデルを洗練し、分子のエネルギー、力、その他の応答特性を正確に予測する。
このモデルは、すべての電子構造項に対する解析的勾配の導出により、エンドツーエンドで微分可能である。
ドメイン固有の特徴を用いることにより、化学空間をまたいで移動可能であることが示されている。
論文 参考訳(メタデータ) (2020-11-05T06:48:46Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。