Cooperative Training and Latent Space Data Augmentation for Robust
Medical Image Segmentation
- URL: http://arxiv.org/abs/2107.01079v1
- Date: Fri, 2 Jul 2021 13:39:13 GMT
- Title: Cooperative Training and Latent Space Data Augmentation for Robust
Medical Image Segmentation
- Authors: Chen Chen, Kerstin Hammernik, Cheng Ouyang, Chen Qin, Wenjia Bai,
Daniel Rueckert
- Abstract summary: Deep learning-based segmentation methods are vulnerable to unforeseen data distribution shifts during deployment.
We present a cooperative framework for training image segmentation models and a latent space augmentation method for generating hard examples.
- Score: 13.017279828963444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based segmentation methods are vulnerable to unforeseen data
distribution shifts during deployment, e.g. change of image appearances or
contrasts caused by different scanners, unexpected imaging artifacts etc. In
this paper, we present a cooperative framework for training image segmentation
models and a latent space augmentation method for generating hard examples.
Both contributions improve model generalization and robustness with limited
data. The cooperative training framework consists of a fast-thinking network
(FTN) and a slow-thinking network (STN). The FTN learns decoupled image
features and shape features for image reconstruction and segmentation tasks.
The STN learns shape priors for segmentation correction and refinement. The two
networks are trained in a cooperative manner. The latent space augmentation
generates challenging examples for training by masking the decoupled latent
space in both channel-wise and spatial-wise manners. We performed extensive
experiments on public cardiac imaging datasets. Using only 10 subjects from a
single site for training, we demonstrated improved cross-site segmentation
performance and increased robustness against various unforeseen imaging
artifacts compared to strong baseline methods. Particularly, cooperative
training with latent space data augmentation yields 15% improvement in terms of
average Dice score when compared to a standard training method.
Related papers
- Enhancing pretraining efficiency for medical image segmentation via transferability metrics [0.0]
In medical image segmentation tasks, the scarcity of labeled training data poses a significant challenge.
We introduce a novel transferability metric, based on contrastive learning, that measures how robustly a pretrained model is able to represent the target data.
arXiv Detail & Related papers (2024-10-24T12:11:52Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
Deep learning (DL) methods have been proposed and widely used for image segmentation.
DL methods usually require a large amount of manually segmented data as training data and suffer from poor interpretability.
In this paper, we replace the hand-crafted regularity term in the MS model with a data adaptive generalized learnable regularity term.
arXiv Detail & Related papers (2023-06-25T02:34:34Z) - CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations [90.50864830038202]
We present Contrastive Spatial Pre-Training (CSP), a self-supervised learning framework for geo-tagged images.
We use a dual-encoder to separately encode the images and their corresponding geo-locations, and use contrastive objectives to learn effective location representations from images.
CSP significantly boosts the model performance with 10-34% relative improvement with various labeled training data sampling ratios.
arXiv Detail & Related papers (2023-05-01T23:11:18Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
In medical image segmentation, supervised deep networks' success comes at the cost of requiring abundant labeled data.
We propose a novel volumetric self-supervised learning for data augmentation capable of synthesizing volumetric image-segmentation pairs.
Our work's central tenet benefits from a combined view of one-shot generative learning and the proposed self-supervised training strategy.
arXiv Detail & Related papers (2021-10-05T15:28:42Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
We propose an adversarial data augmentation approach to improve the efficiency in utilizing training data.
We present a generic task-driven learning framework, which jointly optimize a data augmentation model and a segmentation network during training.
The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
arXiv Detail & Related papers (2021-08-07T11:32:37Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-saliency detection (Co-SOD) aims to segment the common salient foreground in a group of relevant images.
In this paper, inspired by human behavior, we propose a gradient-induced co-saliency detection method.
arXiv Detail & Related papers (2020-04-28T08:40:55Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.