論文の概要: CHISEL: Compression-Aware High-Accuracy Embedded Indoor Localization
with Deep Learning
- arxiv url: http://arxiv.org/abs/2107.01192v1
- Date: Fri, 2 Jul 2021 17:00:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-05 13:02:16.016046
- Title: CHISEL: Compression-Aware High-Accuracy Embedded Indoor Localization
with Deep Learning
- Title(参考訳): CHISEL: 深層学習による屋内局所化の精度向上
- Authors: Liping Wang, Saideep Tiku, Sudeep Pasricha
- Abstract要約: WiFi指紋認証による屋内のローカライゼーションは、この需要を満たす最も有望な方法の1つだ。
そこで我々は,CHISELと呼ばれる圧縮認識・高精度深層学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.657486836910778
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: GPS technology has revolutionized the way we localize and navigate outdoors.
However, the poor reception of GPS signals in buildings makes it unsuitable for
indoor localization. WiFi fingerprinting-based indoor localization is one of
the most promising ways to meet this demand. Unfortunately, most work in the
domain fails to resolve challenges associated with deployability on
resource-limited embedded devices. In this work, we propose a compression-aware
and high-accuracy deep learning framework called CHISEL that outperforms the
best-known works in the area while maintaining localization robustness on
embedded devices.
- Abstract(参考訳): GPS技術は、私たちが屋外でローカライズし、ナビゲートする方法に革命をもたらした。
しかし、建物内のGPS信号の受信が貧弱なため、屋内でのローカライゼーションには適さない。
WiFi指紋認証による屋内位置特定は、この需要を満たす最も有望な方法の1つだ。
残念なことに、ドメイン内のほとんどの作業は、リソース制限された組み込みデバイスへのデプロイ可能性に関する課題を解決できない。
そこで本研究では,組込みデバイスにおけるローカライズロバスト性を維持しつつ,その領域でよく知られた作業より優れる圧縮認識・高精度深層学習フレームワークCHISELを提案する。
関連論文リスト
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - SANGRIA: Stacked Autoencoder Neural Networks with Gradient Boosting for
Indoor Localization [3.3379026542599934]
そこで本研究では,SANGRIAと呼ばれる屋内位置推定のための新しいフィンガープリント・フレームワークを提案する。
屋内の様々な地域や異種デバイスにおける平均局所化誤差が42.96%低いことを実証する。
論文 参考訳(メタデータ) (2024-03-03T00:01:29Z) - Neural 5G Indoor Localization with IMU Supervision [63.45775390000508]
無線信号は、ユビキタスであるため、ユーザのローカライゼーションに適しており、暗黒環境で動作し、プライバシを維持することができる。
多くの先行研究は、チャネル状態情報(CSI)と完全に監督された位置の間のマッピングを学ぶ。
本研究は,慣性測定ユニット(IMU)から算出した擬似ラベルを用いて,本要件を緩和するものである。
論文 参考訳(メタデータ) (2024-02-15T13:51:21Z) - Multi-Head Attention Neural Network for Smartphone Invariant Indoor
Localization [3.577310844634503]
RSSIフィンガープリントと共にスマートフォンは、低コストで高精度な屋内ローカライゼーションソリューションを提供するための効率的なアプローチとして機能する。
デバイスの不均一性に耐性を持つマルチヘッド型ニューラルネットワークを用いた屋内位置決めフレームワークを提案する。
提案手法の詳細な分析により,最先端の屋内局地化技術と比較して最大35%の精度向上が得られた。
論文 参考訳(メタデータ) (2022-05-17T03:08:09Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: 基地局(BSs)からの受信信号強度(RSS)のみに基づく深層学習手法
提案手法では,BSsからのRSSを,クラウド上に存在する可能性のある中央処理ユニット(CPU)にローカライズする。
推定されたBSのパスロスラジオマップを用いて、LocUNetは最先端の精度でユーザをローカライズし、無線マップの不正確性に対して高い堅牢性を享受する。
論文 参考訳(メタデータ) (2022-02-01T20:27:46Z) - Siamese Neural Encoders for Long-Term Indoor Localization with Mobile
Devices [5.063728016437489]
フィンガープリンティングに基づく屋内ローカライゼーションは、屋内ローカライズにおける人や資産の位置と追跡の強化のための新興アプリケーションドメインである。
本稿では,その領域の最先端技術と比較して,局所化精度の低下を最大40%低減する,シームズ・ニューラルエンコーダベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-28T07:22:55Z) - The Tale of Two Localization Technologies: Enabling Accurate
Low-Overhead WiFi-based Localization for Low-end Phones [5.198840934055703]
WiFiフィンガープリントは、屋内ローカライゼーションの主流技術の一つである。
提案するHybridLocは, 高精度な低頭位屋内位置決めシステムである。
HybridLocは、ハイエンドのスマートフォンのセンサーを活用して、ローエンドのスマートフォンのローカライズを可能にする。
論文 参考訳(メタデータ) (2021-06-25T14:31:26Z) - Markov Localisation using Heatmap Regression and Deep Convolutional
Odometry [59.33322623437816]
我々は,最新のディープラーニングハードウェアを活用する新しいCNNベースのローカライゼーション手法を提案する。
画像に基づくローカライゼーションと,1つのニューラルネットワーク内でのオドメトリーに基づく確率伝搬を行うハイブリッドCNNを作成する。
論文 参考訳(メタデータ) (2021-06-01T10:28:49Z) - EdgeLoc: An Edge-IoT Framework for Robust Indoor Localization Using
Capsule Networks [3.659977669398194]
カプセルネットワークを用いた効率的で堅牢な屋内ローカライズのためのエッジIoTフレームワークであるEdgeLocを提案する。
WiFi指紋データから階層情報を効率的に抽出する深層学習モデルをCapsNetで開発する。
我々は,33,600点以上のデータポイントを用いて実世界のフィールド実験を行い,オープンデータセットを用いた広範囲な合成実験を行った。
論文 参考訳(メタデータ) (2020-09-12T12:38:47Z) - Zero-Shot Multi-View Indoor Localization via Graph Location Networks [66.05980368549928]
屋内ローカライゼーションは、位置ベースアプリケーションにおける基本的な問題である。
本稿では,インフラストラクチャフリーで多視点画像に基づく屋内ローカライゼーションを実現するために,新しいニューラルネットワークアーキテクチャであるGraph Location Networks(GLN)を提案する。
GLNは、メッセージパッシングネットワークを通じて画像から抽出されたロバストな位置表現に基づいて位置予測を行う。
新たにゼロショット屋内ローカライズ設定を導入し,提案したGLNを専用ゼロショットバージョンに拡張することで,その課題に対処する。
論文 参考訳(メタデータ) (2020-08-06T07:36:55Z) - Real-time Localization Using Radio Maps [59.17191114000146]
パスロスに基づく簡易かつ効果的なローカライゼーション法を提案する。
提案手法では, 受信した信号強度を, 既知の位置を持つ基地局の集合から報告する。
論文 参考訳(メタデータ) (2020-06-09T16:51:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。