Parallel circuit implementation of variational quantum algorithms
- URL: http://arxiv.org/abs/2304.03037v1
- Date: Thu, 6 Apr 2023 12:52:29 GMT
- Title: Parallel circuit implementation of variational quantum algorithms
- Authors: Michele Cattelan and Sheir Yarkoni
- Abstract summary: We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method to split quantum circuits of variational quantum
algorithms (VQAs) to allow for parallel training and execution, that maximally
exploits the limited number of qubits in hardware to solve large problem
instances. We apply this specifically to combinatorial optimization problems,
where inherent structures from the problem can be identified, thus directly
informing how to create these parallelized quantum circuits, which we call
slices. We test our method by creating a parallelized version of the Quantum
Approximate Optimization Algorithm, which we call pQAOA, and explain how our
methods apply to other quantum algorithms like the Variational Quantum
Eigensolver and quantum annealing. We show that not only can our method address
larger problems, but that it is also possible to run full VQA models while
training parameters using only one slice. These results show that the loss of
information induced by splitting does not necessarily affect the training of
parameters in quantum circuits for optimization. This implies that
combinatorial optimization problems are encoded with redundant information in
quantum circuits of current VQAs. Therefore, to attain quantum advantage for
combinatorial optimization, future quantum algorithms should be designed to
incorporate information that is free of such redundancies.
Related papers
- Scaling Up the Quantum Divide and Conquer Algorithm for Combinatorial Optimization [0.8121127831316319]
We propose a method for constructing quantum circuits which greatly reduces inter-device communication costs.
We show that we can construct tractable circuits nearly three times the size of previous QDCA methods while retaining a similar or greater level of quality.
arXiv Detail & Related papers (2024-05-01T20:49:50Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation
Algorithm [7.581898299650999]
We introduce a simple yet efficient algorithm named Quantum Qubit Rotation Algorithm (QQRA)
The approximate solution of the max-cut problem can be obtained with probability close to 1.
We compare it with the well known quantum approximate optimization algorithm and the classical Goemans-Williamson algorithm.
arXiv Detail & Related papers (2021-10-15T11:19:48Z) - Accelerating Variational Quantum Algorithms Using Circuit Concurrency [2.4718252151897886]
Variational quantum algorithms (VQAs) provide a promising approach to achieve quantum advantage in the noisy intermediate-scale quantum era.
We show that circuit-level iteration provides a means to increase the performance of VQAs on noisy quantum computers.
arXiv Detail & Related papers (2021-09-03T19:31:36Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Reducing the amount of single-qubit rotations in VQE and related
algorithms [0.0]
We show that the number of single-qubit rotations in parameterized quantum circuits can be decreased without compromising the relative expressibility or entangling capability of the circuit.
We also show that the performance of a variational quantum eigensolver is unaffected by a similar decrease in single-qubit rotations.
arXiv Detail & Related papers (2020-05-27T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.