Incorporating Reachability Knowledge into a Multi-Spatial Graph
Convolution Based Seq2Seq Model for Traffic Forecasting
- URL: http://arxiv.org/abs/2107.01528v1
- Date: Sun, 4 Jul 2021 03:23:30 GMT
- Title: Incorporating Reachability Knowledge into a Multi-Spatial Graph
Convolution Based Seq2Seq Model for Traffic Forecasting
- Authors: Jiexia Ye, Furong Zheng, Juanjuan Zhao, Kejiang Ye, Chengzhong Xu
- Abstract summary: Existing works cannot perform well for multi-step traffic prediction that involves long future time period.
Our model is evaluated on two real world traffic datasets and better performance than other competitors.
- Score: 12.626657411944949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate traffic state prediction is the foundation of transportation control
and guidance. It is very challenging due to the complex spatiotemporal
dependencies in traffic data. Existing works cannot perform well for multi-step
traffic prediction that involves long future time period. The spatiotemporal
information dilution becomes serve when the time gap between input step and
predicted step is large, especially when traffic data is not sufficient or
noisy. To address this issue, we propose a multi-spatial graph convolution
based Seq2Seq model. Our main novelties are three aspects: (1) We enrich the
spatiotemporal information of model inputs by fusing multi-view features (time,
location and traffic states) (2) We build multiple kinds of spatial
correlations based on both prior knowledge and data-driven knowledge to improve
model performance especially in insufficient or noisy data cases. (3) A
spatiotemporal attention mechanism based on reachability knowledge is novelly
designed to produce high-level features fed into decoder of Seq2Seq directly to
ease information dilution. Our model is evaluated on two real world traffic
datasets and achieves better performance than other competitors.
Related papers
- Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
We propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF)
FMPESTF is composed of spatial and temporal modules for down-sampling traffic data.
We introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios.
arXiv Detail & Related papers (2024-10-12T03:47:27Z) - Multi-Scale Spatial-Temporal Recurrent Networks for Traffic Flow
Prediction [13.426775574655135]
We propose a Multi-Scale Spatial-Temporal Recurrent Network for traffic flow prediction, namely MSSTRN.
We propose a spatial-temporal synchronous attention mechanism that integrates adaptive position graph convolutions into the self-attention mechanism to achieve synchronous capture of spatial-temporal dependencies.
Our model achieves the best prediction accuracy with non-trivial margins compared to all the twenty baseline methods.
arXiv Detail & Related papers (2023-10-12T08:52:36Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
We propose a Laplacian enhanced low-rank tensor (LETC) framework featuring both lowrankness and multi-temporal correlations for large-scale traffic speed kriging.
We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging.
arXiv Detail & Related papers (2022-10-21T07:25:57Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - PSTN: Periodic Spatial-temporal Deep Neural Network for Traffic
Condition Prediction [8.255993195520306]
We propose a periodic deeptemporal neural network (PSTN) with three modules to improve the forecasting performance of traffic conditions.
First, the historical traffic information is folded and fed into a module consisting of a graph convolutional network and a temporal convolutional network.
arXiv Detail & Related papers (2021-08-05T07:42:43Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.