論文の概要: Towards Better Adversarial Synthesis of Human Images from Text
- arxiv url: http://arxiv.org/abs/2107.01869v1
- Date: Mon, 5 Jul 2021 08:47:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 19:47:02.090955
- Title: Towards Better Adversarial Synthesis of Human Images from Text
- Title(参考訳): テキストからの人間画像のより良い逆合成を目指して
- Authors: Rania Briq, Pratika Kochar, Juergen Gall
- Abstract要約: モデルの性能はCOCOデータセットで評価される。
画像合成フレームワークへの入力としてそのような形状を用いると、人間をリアルな人間の形で合成するネットワークが制限されることを示す。
- 参考スコア(独自算出の注目度): 19.743502366461982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes an approach that generates multiple 3D human meshes from
text. The human shapes are represented by 3D meshes based on the SMPL model.
The model's performance is evaluated on the COCO dataset, which contains
challenging human shapes and intricate interactions between individuals. The
model is able to capture the dynamics of the scene and the interactions between
individuals based on text. We further show how using such a shape as input to
image synthesis frameworks helps to constrain the network to synthesize humans
with realistic human shapes.
- Abstract(参考訳): 本稿では,テキストから複数の3次元メッシュを生成する手法を提案する。
人間の形状はSMPLモデルに基づいて3Dメッシュで表現される。
モデルのパフォーマンスはcocoデータセットで評価され、人間の形状や個人間の複雑な相互作用に挑戦する。
モデルは、シーンのダイナミクスとテキストに基づいた個人間の相互作用をキャプチャすることができる。
さらに,このような形状を画像合成フレームワークへの入力として用いることで,ネットワークが現実の人間の形状で人間を合成するのにどのように役立つかを示す。
関連論文リスト
- FAMOUS: High-Fidelity Monocular 3D Human Digitization Using View Synthesis [51.193297565630886]
テクスチャを正確に推測することの難しさは、特に正面視画像の人物の背中のような不明瞭な領域に残る。
このテクスチャ予測の制限は、大規模で多様な3Dデータセットの不足に起因する。
本稿では,3次元デジタル化におけるテクスチャと形状予測の両立を図るために,広範囲な2次元ファッションデータセットを活用することを提案する。
論文 参考訳(メタデータ) (2024-10-13T01:25:05Z) - DreamHOI: Subject-Driven Generation of 3D Human-Object Interactions with Diffusion Priors [4.697267141773321]
人-物体相互作用(HOI)のゼロショット合成法であるDreamHOIを提案する。
我々は、何十億もの画像キャプチャーペアで訓練されたテキストと画像の拡散モデルを利用して、リアルなHOIを生成する。
提案手法は広範囲な実験を通じて検証し,現実的なHOIを生成する上での有効性を実証する。
論文 参考訳(メタデータ) (2024-09-12T17:59:49Z) - Champ: Controllable and Consistent Human Image Animation with 3D Parametric Guidance [25.346255905155424]
本稿では,潜伏拡散フレームワーク内での3次元人間のパラメトリックモデルを活用することで,人間の画像アニメーションの方法論を提案する。
人間の3次元パラメトリックモデルを動作誘導として表現することにより、基準画像と音源映像の動きの間に人体のパラメトリック形状アライメントを行うことができる。
提案手法は,提案した組込みデータセットに対して,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-21T18:52:58Z) - 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
本稿では,人間の画像とそれに対応する3Dメッシュアノテーションをシームレスに生成できるHumanWildという,最近の拡散モデルに基づく効果的なアプローチを提案する。
生成モデルを排他的に活用することにより,大規模な人体画像と高品質なアノテーションを生成し,実世界のデータ収集の必要性を解消する。
論文 参考訳(メタデータ) (2024-03-17T06:31:16Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
本稿では,デジタルアバターを単一単分子配列で構築する手法を提案する。
ParDy-Humanは、リアルなダイナミックな人間のアバターの明示的なモデルを構成する。
当社のアバター学習には,Splatマスクなどの追加アノテーションが不要であり,ユーザのハードウェア上でも,フル解像度の画像を効率的に推測しながら,さまざまなバックグラウンドでトレーニングすることが可能である。
論文 参考訳(メタデータ) (2023-12-22T20:56:46Z) - Learning Dense Correspondence from Synthetic Environments [27.841736037738286]
既存の方法では、実際の2D画像に手動でラベル付けされた人間のピクセルを3D表面にマッピングする。
本稿では,自動生成合成データを用いた2次元3次元人物マッピングアルゴリズムの訓練により,データ不足の問題を解決することを提案する。
論文 参考訳(メタデータ) (2022-03-24T08:13:26Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
本稿では,人体に対する新しい暗黙の表現法を提案する。
完全に微分可能で、非交叉形状で最適化可能であり、潜在空間を映し出す。
我々のモデルは、よく設計された損失を伴う、水密でない生データを直接訓練し、微調整することができる。
論文 参考訳(メタデータ) (2021-11-30T04:10:57Z) - Creating and Reenacting Controllable 3D Humans with Differentiable
Rendering [3.079885946230076]
本稿では,人間アクターの外観を伝達し再現する,エンドツーエンドのニューラルレンダリングアーキテクチャを提案する。
提案手法は、人体多様体構造をモデル化するために、慎重に設計されたグラフ畳み込みネットワーク(GCN)を利用する。
合成可能レンダリングと3次元パラメトリックモデルの両方の利点を生かして,本手法は完全に制御可能である。
論文 参考訳(メタデータ) (2021-10-22T12:40:09Z) - Detailed Avatar Recovery from Single Image [50.82102098057822]
本稿では,単一画像からエンフデテールアバターを回収するための新しい枠組みを提案する。
階層的メッシュ変形フレームワークでは、ディープニューラルネットワークを使用して3次元形状を洗練しています。
本手法は,皮膚モデルを超えて,完全なテクスチャで詳細な人体形状を復元することができる。
論文 参考訳(メタデータ) (2021-08-06T03:51:26Z) - Learning Transferable Kinematic Dictionary for 3D Human Pose and Shape
Reconstruction [15.586347115568973]
ヒト関節の3次元回転の解空間を明示的に正規化するキネマティック辞書を提案する。
ニューラルネットワークのトレーニング中にシェイプアノテーションを使わずに,エンドツーエンドの3D再構築を実現する。
提案手法は、Human3.6M, MPI-INF-3DHP, LSPなどの大規模データセットの競合結果を得る。
論文 参考訳(メタデータ) (2021-04-02T09:24:29Z) - S3: Neural Shape, Skeleton, and Skinning Fields for 3D Human Modeling [103.65625425020129]
歩行者の形状、ポーズ、皮膚の重みを、データから直接学習する神経暗黙関数として表現します。
各種データセットに対するアプローチの有効性を実証し,既存の最先端手法よりも再現性が優れていることを示す。
論文 参考訳(メタデータ) (2021-01-17T02:16:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。