論文の概要: FFR_FD: Effective and Fast Detection of DeepFakes Based on Feature Point
Defects
- arxiv url: http://arxiv.org/abs/2107.02016v1
- Date: Mon, 5 Jul 2021 13:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 14:57:38.982599
- Title: FFR_FD: Effective and Fast Detection of DeepFakes Based on Feature Point
Defects
- Title(参考訳): ffr_fd:特徴点欠陥に基づくディープフェイクの有効かつ高速検出
- Authors: Gaojian Wang, Qian Jiang, Xin Jin and Xiaohui Cui
- Abstract要約: DeepFakeの顔は、特に特定の顔領域において、実際の顔よりも特徴点が少ないことが示される。
画素レベルでの識別特徴を抽出するための特徴点検出記述子に着想を得て, 高速かつ高速なDeepFake検出のためのFrused Facial Region_Feature Descriptor (FFR_FD)を提案する。
- 参考スコア(独自算出の注目度): 9.568679090566262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The internet is filled with fake face images and videos synthesized by deep
generative models. These realistic DeepFakes pose a challenge to determine the
authenticity of multimedia content. As countermeasures, artifact-based
detection methods suffer from insufficiently fine-grained features that lead to
limited detection performance. DNN-based detection methods are not efficient
enough, given that a DeepFake can be created easily by mobile apps and
DNN-based models require high computational resources. We show that DeepFake
faces have fewer feature points than real ones, especially in certain facial
regions. Inspired by feature point detector-descriptors to extract
discriminative features at the pixel level, we propose the Fused Facial
Region_Feature Descriptor (FFR_FD) for effective and fast DeepFake detection.
FFR_FD is only a vector extracted from the face, and it can be constructed from
any feature point detector-descriptors. We train a random forest classifier
with FFR_FD and conduct extensive experiments on six large-scale DeepFake
datasets, whose results demonstrate that our method is superior to most state
of the art DNN-based models.
- Abstract(参考訳): インターネットには偽の顔画像と深い生成モデルで合成されたビデオがいっぱいです。
これらの現実的なDeepFakesは、マルチメディアコンテンツの信頼性を決定するための課題となる。
対策として、アーティファクトに基づく検出手法は、検出性能の制限につながる細粒度が不十分である。
DNNベースの検出方法は、モバイルアプリで容易にDeepFakeを作成することができ、DNNベースのモデルは高い計算資源を必要とするため、十分に効率的ではない。
DeepFakeの顔は、特に特定の顔領域において、実際の顔よりも特徴点が少ない。
画素レベルでの識別特徴を抽出するための特徴点検出記述子に着想を得て, 高速かつ高速なDeepFake検出のためのFrused Facial Region_Feature Descriptor (FFR_FD)を提案する。
FFR_FDは顔から抽出されたベクトルのみであり、任意の特徴点検出器-ディスクリプタから構築することができる。
我々は,ffr_fdを用いたランダム森林分類器を訓練し,大規模な6つのディープフェイクデータセットについて広範な実験を行った。
関連論文リスト
- Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks [0.0]
ディープフェイク検出は、オンラインコンテンツへの信頼を損なうディープフェイクメディアの拡散と対比することを目的としている。
本稿では,BNN(Binary Neural Networks)を用いた画像に対する新しいディープフェイク検出手法を提案する。
論文 参考訳(メタデータ) (2024-06-07T13:37:36Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
ディープフェイクによる顔の偽造は、大きなセキュリティリスクを引き起こし、深刻な社会的懸念を引き起こしている。
我々は,詳細な分類問題としてディープフェイク検出を定式化し,それに対する新たなきめ細かな解を提案する。
本手法は, 背景雑音を効果的に抑制し, 様々なスケールの識別特徴を学習することにより, 微妙で一般化可能な特徴を学習し, 深度検出を行う。
論文 参考訳(メタデータ) (2023-10-10T21:30:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Real Face Foundation Representation Learning for Generalized Deepfake
Detection [74.4691295738097]
ディープフェイク技術の出現は、個人のプライバシーと公共の安全に脅威をもたらすため、社会的な問題となっている。
十分な偽の顔を集めることはほぼ不可能であり、既存の検出器があらゆる種類の操作に一般化することは困難である。
本稿では,大規模な実顔データセットから一般表現を学習することを目的としたリアルフェイスファウンデーション表現学習(RFFR)を提案する。
論文 参考訳(メタデータ) (2023-03-15T08:27:56Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - An Experimental Evaluation on Deepfake Detection using Deep Face
Recognition [0.0]
ディープラーニングは、ディープフェイク(deepfakes)として知られる非常に現実的なフェイクコンテンツを生み出した。
現在のディープフェイク検出法のほとんどは、2クラス畳み込みニューラルネットワーク(CNN)を用いた偽のイメージやビデオとを区別する二項分類問題と見なされている。
本稿では,異なる損失関数とディープフェイク生成技術を用いて,ディープフェイク識別におけるディープフェイク認識の有効性を徹底的に評価する。
論文 参考訳(メタデータ) (2021-10-04T18:02:56Z) - One Detector to Rule Them All: Towards a General Deepfake Attack
Detection Framework [19.762839181838388]
本稿では,LSTMに基づくResidual Network(CLRNet)を導入し,未知の未確認ディープフェイクに対処する。
我々のCLRNetモデルは、93.86%の精度で高品質なDFWビデオに対してうまく一般化できることを実証した。
論文 参考訳(メタデータ) (2021-05-01T08:02:59Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Improving DeepFake Detection Using Dynamic Face Augmentation [0.8793721044482612]
ほとんどの公開可能なDeepFake検出データセットには、限られたバリエーションがある。
ディープニューラルネットワークは、DeepFakeコンテンツの操作機能を検出するための学習ではなく、顔の特徴にオーバーフィットする傾向があります。
DeepFake検出を改善するために、CNN(Convolutional Neural Networks)をトレーニングするためのデータ拡張方法であるFace-Cutoutを紹介します。
論文 参考訳(メタデータ) (2021-02-18T20:25:45Z) - Sharp Multiple Instance Learning for DeepFake Video Detection [54.12548421282696]
我々はDeepFakeビデオに、ビデオレベルのラベルのみを提供するが、フェイクビデオのすべての顔が操作されるわけではない部分的な顔攻撃という新しい問題を導入する。
インスタンス埋め込みからバッグ予測への直接マッピングを構築する鋭いMIL(S-MIL)を提案する。
FFPMSと広く使われているDFDCデータセットの実験により、S-MILは部分的に攻撃されたDeepFakeビデオ検出において他の手法よりも優れていることが確認された。
論文 参考訳(メタデータ) (2020-08-11T08:52:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。