論文の概要: Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks
- arxiv url: http://arxiv.org/abs/2406.04932v1
- Date: Fri, 7 Jun 2024 13:37:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-10 13:51:43.670465
- Title: Faster Than Lies: Real-time Deepfake Detection using Binary Neural Networks
- Title(参考訳): 嘘より速い:二元ニューラルネットワークを用いたリアルタイムディープフェイク検出
- Authors: Lanzino Romeo, Fontana Federico, Diko Anxhelo, Marini Marco Raoul, Cinque Luigi,
- Abstract要約: ディープフェイク検出は、オンラインコンテンツへの信頼を損なうディープフェイクメディアの拡散と対比することを目的としている。
本稿では,BNN(Binary Neural Networks)を用いた画像に対する新しいディープフェイク検出手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake detection aims to contrast the spread of deep-generated media that undermines trust in online content. While existing methods focus on large and complex models, the need for real-time detection demands greater efficiency. With this in mind, unlike previous work, we introduce a novel deepfake detection approach on images using Binary Neural Networks (BNNs) for fast inference with minimal accuracy loss. Moreover, our method incorporates Fast Fourier Transform (FFT) and Local Binary Pattern (LBP) as additional channel features to uncover manipulation traces in frequency and texture domains. Evaluations on COCOFake, DFFD, and CIFAKE datasets demonstrate our method's state-of-the-art performance in most scenarios with a significant efficiency gain of up to a $20\times$ reduction in FLOPs during inference. Finally, by exploring BNNs in deepfake detection to balance accuracy and efficiency, this work paves the way for future research on efficient deepfake detection.
- Abstract(参考訳): ディープフェイク検出は、オンラインコンテンツへの信頼を損なうディープフェイクメディアの拡散と対比することを目的としている。
既存の手法は大規模で複雑なモデルに重点を置いているが、リアルタイム検出の必要性により効率が向上する。
このことを念頭に置いて,BNN(Binary Neural Networks)を用いた画像に新たなディープフェイク検出手法を導入し,精度の低下を最小限に抑える。
さらに,Fast Fourier Transform (FFT) とLocal Binary Pattern (LBP) を付加して,周波数領域とテクスチャ領域の操作トレースを明らかにする。
COCOFake、DFFD、CIFAKEデータセットの評価は、ほとんどのシナリオにおける我々の手法の最先端性能を示し、推論中にFLOPを最大20\times$で削減する。
最後に,BNNを深度検出で探索し,精度と効率のバランスをとることにより,深度検出の効率化に向けた今後の研究の道を開く。
関連論文リスト
- Unmasking Deepfake Faces from Videos Using An Explainable Cost-Sensitive
Deep Learning Approach [0.0]
ディープフェイク技術は広く使われており、デジタルメディアの信頼性に関する深刻な懸念につながっている。
本研究は,映像中のディープフェイク顔を効果的に検出するために,リソース効率が高く透明なコスト感受性深層学習法を用いている。
論文 参考訳(メタデータ) (2023-12-17T14:57:10Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
ディープフェイクによる顔の偽造は、大きなセキュリティリスクを引き起こし、深刻な社会的懸念を引き起こしている。
我々は,詳細な分類問題としてディープフェイク検出を定式化し,それに対する新たなきめ細かな解を提案する。
本手法は, 背景雑音を効果的に抑制し, 様々なスケールの識別特徴を学習することにより, 微妙で一般化可能な特徴を学習し, 深度検出を行う。
論文 参考訳(メタデータ) (2023-10-10T21:30:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
近年の顔偽造技術は、ほとんど追跡不可能なディープフェイクビデオを生み出しており、悪意のある意図で活用することができる。
従来の研究では、ディープフェイク法にまたがる一般化を追求する上で、局所的な低レベルな手がかりと時間的情報の重要性が指摘されてきた。
本稿では,局所的・時間的変換をベースとしたDeepfake Detectionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-06T16:46:30Z) - FFR_FD: Effective and Fast Detection of DeepFakes Based on Feature Point
Defects [9.568679090566262]
DeepFakeの顔は、特に特定の顔領域において、実際の顔よりも特徴点が少ないことが示される。
画素レベルでの識別特徴を抽出するための特徴点検出記述子に着想を得て, 高速かつ高速なDeepFake検出のためのFrused Facial Region_Feature Descriptor (FFR_FD)を提案する。
論文 参考訳(メタデータ) (2021-07-05T13:35:39Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
現在の物体検出器は、高い精度と高速な推論速度のバランスを取るのが難しい。
ロボットつかみポーズ推定を行うための効率的かつ堅牢な完全畳み込みニューラルネットワークモデルを提案する。
ネットワークは、他の優れたアルゴリズムよりも桁違いに小さい順序です。
論文 参考訳(メタデータ) (2021-01-25T16:36:53Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
本稿では,高速な物体検出のための新しいディープラーニングアルゴリズムを提案する。
提案アルゴリズムは,1つのCPUスレッドと同時に,競合精度と高い推論効率を実現する。
論文 参考訳(メタデータ) (2020-01-22T15:23:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。