論文の概要: No-Reference Quality Assessment for Colored Point Cloud and Mesh Based
on Natural Scene Statistics
- arxiv url: http://arxiv.org/abs/2107.02041v1
- Date: Mon, 5 Jul 2021 14:03:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 14:41:36.594873
- Title: No-Reference Quality Assessment for Colored Point Cloud and Mesh Based
on Natural Scene Statistics
- Title(参考訳): 自然景観統計に基づく色付き点雲とメッシュの非参照品質評価
- Authors: Zicheng Zhang
- Abstract要約: 色付き3次元モデルに対するNASに基づくノン参照品質評価指標を提案する。
本手法は主に,カラーポイントクラウド品質評価データベース (SJTU-PCQA) とカラーメッシュ品質評価データベース (CMDM) で検証されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To improve the viewer's quality of experience and optimize processing systems
in computer graphics applications, the 3D quality assessment (3D-QA) has become
an important task in the multimedia area. Point cloud and mesh are the two most
widely used electronic representation formats of 3D models, the quality of
which is quite sensitive to operations like simplification and compression.
Therefore, many studies concerning point cloud quality assessment (PCQA) and
mesh quality assessment (MQA) have been carried out to measure the visual
quality degradations caused by lossy operations. However, a large part of
previous studies utilizes full-reference (FR) metrics, which means they may
fail to predict the accurate quality level of 3D models when the reference 3D
model is not available. Furthermore, limited numbers of 3D-QA metrics are
carried out to take color features into consideration, which significantly
restricts the effectiveness and scope of application. In many quality
assessment studies, natural scene statistics (NSS) have shown a good ability to
quantify the distortion of natural scenes to statistical parameters. Therefore,
we propose an NSS-based no-reference quality assessment metric for colored 3D
models. In this paper, quality-aware features are extracted from the aspects of
color and geometry directly from the 3D models. Then the statistic parameters
are estimated using different distribution models to describe the
characteristic of the 3D models. Our method is mainly validated on the colored
point cloud quality assessment database (SJTU-PCQA) and the colored mesh
quality assessment database (CMDM). The experimental results show that the
proposed method outperforms all the state-of-art NR 3D-QA metrics and obtains
an acceptable gap with the state-of-art FR 3D-QA metrics.
- Abstract(参考訳): コンピュータグラフィックスアプリケーションにおけるユーザ体験の質の向上と処理システムの最適化のために,マルチメディア分野において3D品質評価(3D-QA)が重要な課題となっている。
ポイントクラウドとメッシュは3Dモデルの最も広く使われている2つの電子表現フォーマットであり、その品質は単純化や圧縮といった操作に非常に敏感である。
そこで, ポイントクラウド品質評価 (PCQA) とメッシュ品質評価 (MQA) に関する多くの研究が, 損失操作による視覚的品質劣化を測定するために行われている。
しかし、これまでの研究の大部分はフルリファレンス(fr)メトリクスを使用しており、参照3dモデルが利用できない場合、3dモデルの正確な品質レベルを予測できない可能性がある。
さらに、カラー特徴を考慮した3D-QA測定値の制限を行い、アプリケーションの有効性と範囲を著しく制限する。
多くの品質評価研究において、自然シーン統計(NSS)は、自然シーンの歪みを統計的パラメータに定量化する優れた能力を示している。
そこで本研究では,nssを用いた3dモデルのための無基準品質評価指標を提案する。
本稿では,3dモデルから直接,色と幾何学の側面から品質を認識できる特徴を抽出する。
そして、異なる分布モデルを用いて統計パラメータを推定し、3次元モデルの特徴を記述する。
本手法は主に,カラーポイントクラウド品質評価データベース (SJTU-PCQA) とカラーメッシュ品質評価データベース (CMDM) で検証されている。
実験の結果,提案手法は最先端のNR 3D-QA測定値よりも優れており,最先端のFR 3D-QA測定値との差が許容できることがわかった。
関連論文リスト
- Activating Frequency and ViT for 3D Point Cloud Quality Assessment
without Reference [0.49157446832511503]
与えられた3D-PCの非参照品質指標を提案する。
入力属性を品質スコアにマップするには、Deformable Convolutional Network(DCN)とViT(ViT)を組み合わせた軽量ハイブリッドディープモデルを用いる。
その結果,本手法は現在のNR-PCQA測度やPointXRのFR-PCQAよりも優れていた。
論文 参考訳(メタデータ) (2023-12-10T19:13:34Z) - Geometry-Aware Video Quality Assessment for Dynamic Digital Human [56.17852258306602]
DDH-QAチャレンジのための新しい非参照(NR)幾何対応ビデオ品質評価手法を提案する。
提案手法はDDH-QAデータベース上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-10-24T16:34:03Z) - GMS-3DQA: Projection-based Grid Mini-patch Sampling for 3D Model Quality
Assessment [82.93561866101604]
従来のプロジェクションに基づく3DQA手法は,複数プロジェクションから特徴を直接抽出して品質予測精度を確保する。
我々は,Non-Reference (NR) projection-based textitunderlineGrid underlineMini-patch underlineSampling underline3D Model underlineQuality underlineAssessment (GMS-3DQA)法を提案する。
提案されたGMS-3DQAは、他の3Dよりもはるかに少ない計算資源と推論時間を必要とする
論文 参考訳(メタデータ) (2023-06-09T03:53:12Z) - EEP-3DQA: Efficient and Effective Projection-based 3D Model Quality
Assessment [58.16279881415622]
3次元モデルの高品質な特徴を抽出する効率的なモジュールを実現することは困難である。
提案手法は,Non-Reference (NR) underlineEfficient and UnderlineEffective UnderlineProjection-based Underline3D Model underlineQuality underlineAssessment (textbfEEP-3DQA) 法である。
提案されたEEP-3DQAとEEP-3DQA-t (tiny version)の実現
論文 参考訳(メタデータ) (2023-02-17T06:14:37Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
本研究では,3次元高密度点雲の知覚的視覚的品質を自動評価するために,Structure Guided Resampling (SGR) を用いた客観的点雲品質指標を提案する。
提案するSGRは,参照情報の不要な汎用ブラインド品質評価手法である。
論文 参考訳(メタデータ) (2022-08-31T02:42:55Z) - Subjective and Objective Visual Quality Assessment of Textured 3D Meshes [3.738515725866836]
本稿では,2つの比較プロトコルを用いて,テクスチャメッシュの知覚的品質を評価するための新しい主観的研究を提案する。
テクスチャメッシュの視覚的品質評価のための2つの新しい指標を提案する。
論文 参考訳(メタデータ) (2021-02-08T03:26:41Z) - Reduced Reference Perceptual Quality Model and Application to Rate
Control for 3D Point Cloud Compression [61.110938359555895]
レート歪み最適化では、ビットレートの制約を受ける再構成品質尺度を最大化してエンコーダ設定を決定する。
本稿では,V-PCC幾何および色量化パラメータを変数とする線形知覚品質モデルを提案する。
400個の圧縮された3D点雲による主観的品質試験の結果,提案モデルが平均評価値とよく相関していることが示唆された。
また、同じ目標ビットレートに対して、提案モデルに基づくレート歪みの最適化は、ポイント・ツー・ポイントの客観的な品質指標による徹底的な探索に基づくレート歪みの最適化よりも高い知覚品質を提供することを示した。
論文 参考訳(メタデータ) (2020-11-25T12:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。