Relativistic Constraints on Interpretations of Quantum Mechanics
- URL: http://arxiv.org/abs/2107.02089v1
- Date: Mon, 5 Jul 2021 15:28:42 GMT
- Title: Relativistic Constraints on Interpretations of Quantum Mechanics
- Authors: Wayne C. Myrvold
- Abstract summary: It focuses on four main avenues of approach: (i) additional beables theories, (ii) dynamical collapse theories, (iii) Everettian, or "many-worlds" interpretations, and (iv) non-realist interpretations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This chapter, from the Routledge Companion to the Philosophy of Physics
(Eleanor Knox and Alastair Wilson, eds., 2021), is an overview of the
constraints that relativity places on interpretations of quantum theory. It
focuses on four main avenues of approach: (i) additional beables theories,
which include "hidden-variables" theories and modal interpretations, (ii)
dynamical collapse theories, (iii) Everettian, or "many-worlds"
interpretations, and (iv) non-realist interpretations, which deny that quantum
states represent anything in physical reality independent of considerations of
agents and their beliefs.
Related papers
- Intuitionistic Quantum Logic Perspective: Static and Dynamic Revision Operators [6.646627444027416]
We focus on the exploration of a revision theory grounded in quantum mechanics, referred to as the natural revision theory.
We combine the advantages of two intuitionistic quantum logic frameworks, as proposed by D"oring and Coecke.
We introduce two types of revision operators that correspond to the two reasoning modes in quantum systems: static and dynamic revision.
arXiv Detail & Related papers (2024-04-21T10:35:06Z) - Relaxation of first-class constraints and the quantization of gauge theories: from "matter without matter" to the reappearance of time in quantum gravity [72.27323884094953]
We make a conceptual overview of an approach to the initial-value problem in canonical gauge theories.
We stress how the first-class phase-space constraints may be relaxed if we interpret them as fixing the values of new degrees of freedom.
arXiv Detail & Related papers (2024-02-19T19:00:02Z) - Hyperfine Structure of Quantum Entanglement [8.203995433574182]
We introduce the textithyperfine structure of entanglement, which dissects entanglement contours known as the fine structure into particle-number cumulants.
Our findings suggest experimental accessibility, offering fresh insights into quantum entanglement across physical systems.
arXiv Detail & Related papers (2023-11-03T15:49:56Z) - Quantum Theory Needs (And Probably Has) Real Reduction [0.0]
It appears that for quantum theory to be viable in a realist sense, it must possess genuine, physical non-unitarity.
Penrose's theory of gravitation-induced collapse and the Transactional Interpretation are discussed.
arXiv Detail & Related papers (2023-04-20T21:25:23Z) - A new interpretation of quantum theory, based on a bundle-theoretic view
of objective idealism [0.0]
The 'weirdness' of quantum theory can be understood to derive from a vanishing distinguishability of indiscernible particles.
The claim is made that quantum theory can be interpreted in an intelligible way by positing a bundle-theoretic view of objective idealism instead of materialism.
arXiv Detail & Related papers (2022-08-22T12:15:04Z) - The relational ontology of contemporary physics [0.0]
Quantum theory can be understood as pointing to an ontology of relations.
I observe that this reading of quantum mechanics is supported by the ubiquity of relationality in contemporary fundamental physics.
arXiv Detail & Related papers (2022-01-03T23:30:08Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Understanding Quantum Theory [0.0]
This paper attempts to clarify some issues that are discussed in the interpretations of quantum theory.
One of the main points of this paper is the role of predictions in understanding any theory of physics.
arXiv Detail & Related papers (2020-07-27T16:06:48Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum many-body physics from a gravitational lens [8.020530603813416]
We discuss recent developments in holographic duality in connection with quantum many-body dynamics.
These include insights into strongly correlated phases without quasiparticles and their transport properties.
We also discuss recent progress in understanding the structure of holographic duality itself using quantum information.
arXiv Detail & Related papers (2020-04-13T19:05:24Z) - Bohr meets Rovelli: a dispositionalist account of the quantum limits of
knowledge [0.0]
I argue that the no-go theorems reflect on a formal level those practical and experimental settings that are needed to come to know the properties of physical systems.
I show that, as a consequence of a relationist and perspectival approach to quantum mechanics, the quantum state of the universe regarded as an isolated system cannot be known in principle.
arXiv Detail & Related papers (2020-01-13T22:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.