論文の概要: Label noise in segmentation networks : mitigation must deal with bias
- arxiv url: http://arxiv.org/abs/2107.02189v1
- Date: Mon, 5 Jul 2021 18:00:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 13:57:48.515198
- Title: Label noise in segmentation networks : mitigation must deal with bias
- Title(参考訳): セグメンテーションネットワークにおけるラベルノイズ : 緩和はバイアスに対処しなければならない
- Authors: Eugene Vorontsov, Samuel Kadoury
- Abstract要約: 本研究では,MRIデータ上の脳腫瘍のアノテーションに人工的に導入された偏りと偏りのない誤りについて検討する。
教師付きおよび半教師付きセグメンテーション法は, 偏りのない誤りに対して頑健であり, 偏りのある誤りに対しては敏感であることがわかった。
- 参考スコア(独自算出の注目度): 6.566710660772139
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imperfect labels limit the quality of predictions learned by deep neural
networks. This is particularly relevant in medical image segmentation, where
reference annotations are difficult to collect and vary significantly even
across expert annotators. Prior work on mitigating label noise focused on
simple models of mostly uniform noise. In this work, we explore biased and
unbiased errors artificially introduced to brain tumour annotations on MRI
data. We found that supervised and semi-supervised segmentation methods are
robust or fairly robust to unbiased errors but sensitive to biased errors. It
is therefore important to identify the sorts of errors expected in medical
image labels and especially mitigate the biased errors.
- Abstract(参考訳): 不完全なラベルは、ディープニューラルネットワークによって学習される予測の品質を制限する。
これは医用画像のセグメンテーションにおいて特に重要であり、参照アノテーションの収集が困難であり、専門家アノテータの間でも顕著に異なる。
ラベルノイズを緩和する以前の研究は、主に一様雑音の単純なモデルに焦点を当てていた。
本研究では,mriデータに対する脳腫瘍アノテーションに人工的に導入したバイアス付きおよび偏りのない誤りについて検討する。
教師付きおよび半教師付きセグメンテーション法は,非バイアスエラーに対して頑健であり,バイアスエラーに対しては敏感であることがわかった。
したがって、医用画像ラベルに期待される誤りの種類を特定し、特に偏りを緩和することが重要である。
関連論文リスト
- Towards frugal unsupervised detection of subtle abnormalities in medical
imaging [0.0]
医用画像における異常検出は、異常が注釈付けされていない状況では難しい課題である。
汎用性が広く認識されている確率分布の混合について検討する。
このオンラインアプローチは、新たに診断されたパーキンソン病患者の追跡において、MR脳スキャンの微妙な異常の検出が困難であることを示すものである。
論文 参考訳(メタデータ) (2023-09-04T07:44:54Z) - How Does Pruning Impact Long-Tailed Multi-Label Medical Image
Classifiers? [49.35105290167996]
プルーニングは、ディープニューラルネットワークを圧縮し、全体的なパフォーマンスに大きな影響を及ぼすことなく、メモリ使用量と推論時間を短縮する強力なテクニックとして登場した。
この研究は、プルーニングがモデル行動に与える影響を理解するための第一歩である。
論文 参考訳(メタデータ) (2023-08-17T20:40:30Z) - Learning to Segment from Noisy Annotations: A Spatial Correction
Approach [12.604673584405385]
ノイズラベルはディープニューラルネットワーク(DNN)の性能に大きく影響する
空間相関とバイアスの両方をエンコードするセグメンテーションノイズアノテーションのための新しいマルコフモデルを提案する。
提案手法は, 合成および実世界のノイズアノテーションにおいて, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-21T00:27:40Z) - Weakly Supervised Medical Image Segmentation With Soft Labels and Noise
Robust Loss [0.16490701092527607]
ディープラーニングモデルのトレーニングには、エキスパートラベル付きアノテーションを備えた大規模なデータセットが一般的に必要である。
不正確なセグメンテーションラベルで訓練されたディープラーニングモデルを用いた画像ベースの医療診断ツールは、誤診断や治療提案につながる可能性がある。
本研究の目的は, マルチラターアノテーションとMRIにおける病変の特徴の解剖学的知識に基づいて, 確率ラベルを生成する手法を開発し, 評価することである。
論文 参考訳(メタデータ) (2022-09-16T21:07:59Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
本研究では, バイアスラベルを正確に把握せず, 脱バイアス胸部X線診断モデルの開発について検討した。
本稿では,まずサンプルごとのバイアスラベルをキャプチャし,予測する新しいアルゴリズム,擬似バイアスバランス学習を提案する。
提案手法は他の最先端手法よりも一貫した改善を実現した。
論文 参考訳(メタデータ) (2022-03-18T11:02:18Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
病理検体の全スライディング画像(WSI)における癌領域のアノテーションは、臨床診断、生医学研究、機械学習アルゴリズムの開発において重要な役割を担っている。
本稿では,外部トレーニングデータを必要とせず,単一のWSI上で粗いアノテーションを洗練するためのLC-MIL (Label Cleaning Multiple Instance Learning) を提案する。
乳癌リンパ節転移,肝癌,大腸癌の検体を併用した異種 WSI 実験の結果,LC-MIL は粗いアノテーションを著しく改善し,単一スライドから学習しながらも,最先端の代替品よりも優れていた。
論文 参考訳(メタデータ) (2021-09-22T15:06:06Z) - Co-Correcting: Noise-tolerant Medical Image Classification via mutual
Label Correction [5.994566233473544]
本稿では,Co-Correctingという耐雑音性医用画像分類フレームワークを提案する。
分類精度を大幅に向上させ、デュアルネットワーク相互学習、ラベル確率推定、カリキュラムラベルの修正を通じてより正確なラベルを得る。
実験により, 様々なタスクにおいて, 雑音比の異なるコココレクショニングが最適な精度と一般化を実現することが示された。
論文 参考訳(メタデータ) (2021-09-11T02:09:52Z) - Improving Medical Image Classification with Label Noise Using
Dual-uncertainty Estimation [72.0276067144762]
医用画像における2種類のラベルノイズについて論じ,定義する。
医用画像分類作業中にこれら2つのラベルノイズを処理する不確実性推定に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-28T14:56:45Z) - Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions
Segmentation [79.58311369297635]
異なるデータセットにまたがるトランスファー可能なドメイン不変知識を探索できる,新しい弱い教師付き病巣移動フレームワークを提案する。
wasserstein quantified transferability frameworkは、広い範囲の転送可能なコンテキスト依存性を強調するために開発されている。
新規な自己監督型擬似ラベル生成器は、送信困難かつ転送容易なターゲットサンプルの両方に対して、確実な擬似ピクセルラベルを等しく提供するように設計されている。
論文 参考訳(メタデータ) (2020-12-08T02:26:03Z) - Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images [12.009437407687987]
本稿では,純粋にノイズの多い観測のみから,個々のアノテータの信頼性,真のセグメンテーションラベル分布まで,共同学習手法を提案する。
本手法は,必要ならばシミュレートした3つの医用画像セグメンテーションデータセットと実際の多彩なアノテーションに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-07-31T11:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。