Detecting Outliers with Poisson Image Interpolation
- URL: http://arxiv.org/abs/2107.02622v1
- Date: Tue, 6 Jul 2021 13:53:17 GMT
- Title: Detecting Outliers with Poisson Image Interpolation
- Authors: Jeremy Tan, Benjamin Hou, Thomas Day, John Simpson, Daniel Rueckert,
Bernhard Kainz
- Abstract summary: We propose an alternative to image reconstruction-based and image embedding-based methods to tackle pathological anomaly detection.
Our approach originates in the foreign patch pathology (FPI) strategy that has shown superior performance on brain MRI and abdominal CT data.
We propose to use a better patch strategy, Poisson image (PII) which makes our method suitable for applications in challenging data regimes.
- Score: 9.928058261360578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised learning of every possible pathology is unrealistic for many
primary care applications like health screening. Image anomaly detection
methods that learn normal appearance from only healthy data have shown
promising results recently. We propose an alternative to image
reconstruction-based and image embedding-based methods and propose a new
self-supervised method to tackle pathological anomaly detection. Our approach
originates in the foreign patch interpolation (FPI) strategy that has shown
superior performance on brain MRI and abdominal CT data. We propose to use a
better patch interpolation strategy, Poisson image interpolation (PII), which
makes our method suitable for applications in challenging data regimes. PII
outperforms state-of-the-art methods by a good margin when tested on surrogate
tasks like identifying common lung anomalies in chest X-rays or hypo-plastic
left heart syndrome in prenatal, fetal cardiac ultrasound images. Code
available at https://github.com/jemtan/PII.
Related papers
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
We introduce a novel Spatial-aware Attention Generative Adrialversa Network (SAGAN) for one-class semi-supervised generation of health images.
SAGAN generates high-quality health images corresponding to unlabeled data, guided by the reconstruction of normal images and restoration of pseudo-anomaly images.
Extensive experiments on three medical datasets demonstrate that the proposed SAGAN outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-05-21T15:41:34Z) - MedIAnomaly: A comparative study of anomaly detection in medical images [26.319602363581442]
Anomaly detection (AD) aims at detecting abnormal samples that deviate from the expected normal patterns.
Despite numerous methods for medical AD, we observe a lack of a fair and comprehensive evaluation.
This paper builds a benchmark with unified comparison.
arXiv Detail & Related papers (2024-04-06T06:18:11Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - A Two-Stage Generative Model with CycleGAN and Joint Diffusion for
MRI-based Brain Tumor Detection [41.454028276986946]
We propose a novel framework Two-Stage Generative Model (TSGM) to improve brain tumor detection and segmentation.
CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior.
VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide.
arXiv Detail & Related papers (2023-11-06T12:58:26Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Margin-Aware Intra-Class Novelty Identification for Medical Images [2.647674705784439]
We propose a hybrid model - Transformation-based Embedding learning for Novelty Detection (TEND)
With a pre-trained autoencoder as image feature extractor, TEND learns to discriminate the feature embeddings of in-distribution data from the transformed counterparts as fake out-of-distribution inputs.
arXiv Detail & Related papers (2021-07-31T00:10:26Z) - Implicit field learning for unsupervised anomaly detection in medical
images [0.8122270502556374]
An auto-decoder feed-forward neural network learns the distribution of healthy images in the form of a mapping between spatial coordinates and probabilities over a proxy for tissue types.
Anomalies are localized using the voxel-wise probability predicted by our model for the restored image.
We tested our approach in the task of unsupervised localization of gliomas on brain MR images and compared it to several other VAE-based anomaly detection methods.
arXiv Detail & Related papers (2021-06-09T16:57:22Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.