A Model-Driven Engineering Approach to Machine Learning and Software
Modeling
- URL: http://arxiv.org/abs/2107.02689v1
- Date: Tue, 6 Jul 2021 15:50:50 GMT
- Title: A Model-Driven Engineering Approach to Machine Learning and Software
Modeling
- Authors: Armin Moin, Atta Badii and Stephan G\"unnemann
- Abstract summary: Models are used in both the Software Engineering (SE) and the Artificial Intelligence (AI) communities.
The main focus is on the Internet of Things (IoT) and smart Cyber-Physical Systems (CPS) use cases, where both ML and model-driven SE play a key role.
- Score: 0.5156484100374059
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Models are used in both the Software Engineering (SE) and the Artificial
Intelligence (AI) communities. In the former case, models of software, which
may specify the software system architecture on different levels of abstraction
could be used in various stages of the Software Development Life-Cycle (SDLC),
from early conceptualization and design, to verification, implementation,
testing and evolution. However, in the latter case, i.e., AI, models may
provide smart capabilities, such as prediction and decision making support. For
instance, in Machine Learning (ML), which is the most popular sub-discipline of
AI at the present time, mathematical models may learn useful patterns in the
observed data instances and can become capable of making better predictions or
recommendations in the future. The goal of this work is to create synergy by
bringing models in the said communities together and proposing a holistic
approach. We illustrate how software models can become capable of producing or
dealing with data analytics and ML models. The main focus is on the Internet of
Things (IoT) and smart Cyber-Physical Systems (CPS) use cases, where both ML
and model-driven (model-based) SE play a key role. In particular, we implement
the proposed approach in an open source prototype and validate it using two use
cases from the IoT/CPS domain.
Related papers
- Next-Gen Software Engineering: AI-Assisted Big Models [0.0]
This paper aims to facilitate a synthesis between models and AI in software engineering.
The paper provides an overview of the current status of AI-assisted software engineering.
A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches.
arXiv Detail & Related papers (2024-09-26T16:49:57Z) - Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
We propose a conceptual framework that combines modeling event logs, intelligent modeling assistants, and the generation of modeling operations.
In particular, the architecture comprises modeling components that help the designer specify the system, record its operation within a graphical modeling environment, and automatically recommend relevant operations.
arXiv Detail & Related papers (2024-08-26T13:26:44Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - A comprehensible analysis of the efficacy of Ensemble Models for Bug
Prediction [0.0]
We present a comparison and analysis of the efficacy of two AI-based approaches, namely single AI models and ensemble AI models, for predicting the probability of a Java class being buggy.
Our experimental findings indicate that the ensemble of AI models can outperform the results of applying individual AI models.
arXiv Detail & Related papers (2023-10-18T17:43:54Z) - Model Share AI: An Integrated Toolkit for Collaborative Machine Learning
Model Development, Provenance Tracking, and Deployment in Python [0.0]
We introduce Model Share AI (AIMS), an easy-to-use MLOps platform designed to streamline collaborative model development, model provenance tracking, and model deployment.
AIMS features collaborative project spaces and a standardized model evaluation process that ranks model submissions based on their performance on unseen evaluation data.
AIMS allows users to deploy ML models built in Scikit-Learn, Keras, PyTorch, and ONNX into live REST APIs and automatically generated web apps.
arXiv Detail & Related papers (2023-09-27T15:24:39Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.