論文の概要: Remote sensing, AI and innovative prediction methods for adapting cities
to the impacts of the climate change
- arxiv url: http://arxiv.org/abs/2107.02693v1
- Date: Tue, 6 Jul 2021 15:55:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 13:42:34.669634
- Title: Remote sensing, AI and innovative prediction methods for adapting cities
to the impacts of the climate change
- Title(参考訳): 都市を気候変動の影響に適応させるリモートセンシング、AIおよび革新的な予測方法
- Authors: Beril Sirmacek
- Abstract要約: リモートセンシング画像からインジケータを抽出するのに有用なAIベースのフレームワークを提案する。
これは多くの科学者にとってオープンフィールドであり、現在進行中の研究であり、AIベースの手法の課題と限界について深く議論しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Urban areas are not only one of the biggest contributors to climate change,
but also they are one of the most vulnerable areas with high populations who
would together experience the negative impacts. In this paper, I address some
of the opportunities brought by satellite remote sensing imaging and artificial
intelligence (AI) in order to measure climate adaptation of cities
automatically. I propose an AI-based framework which might be useful for
extracting indicators from remote sensing images and might help with predictive
estimation of future states of these climate adaptation related indicators.
When such models become more robust and used in real-life applications, they
might help decision makers and early responders to choose the best actions to
sustain the wellbeing of society, natural resources and biodiversity. I
underline that this is an open field and an ongoing research for many
scientists, therefore I offer an in depth discussion on the challenges and
limitations of AI-based methods and the predictive estimation models in
general.
- Abstract(参考訳): 都市部は気候変動の最大の要因の1つであるだけでなく、人口の多い地域で最も脆弱な地域であり、同時にマイナスの影響も経験している。
本稿では,衛星リモートセンシング画像と人工知能(ai)によってもたらされる,都市の気候適応度を自動的に測定する機会について述べる。
本稿では,リモートセンシング画像から指標を抽出する上で有用なAIベースのフレームワークを提案する。
このようなモデルがより堅牢になり、現実のアプリケーションで使われるようになると、意思決定者や早期応答者が社会、天然資源、生物多様性の幸福を維持するための最善の行動を選択するのに役立つかもしれません。
これは多くの科学者にとってオープンフィールドであり、現在進行中の研究であり、AIベースの手法の課題と限界に関する深い議論と予測モデルについて述べています。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Towards A Comprehensive Assessment of AI's Environmental Impact [0.5982922468400899]
機械学習に対する最近の関心の高まりは、AI/MLの大規模採用に拍車をかけた。
ライフサイクルを通じて、AI/MLから環境への影響と劣化を監視するフレームワークが必要である。
本研究では、オープンなエネルギーデータとグローバルに取得した衛星観測を用いて、データセンター周辺におけるAIの多面的影響に関連する環境変数を追跡する手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:19:35Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Analyzing Regional Impacts of Climate Change using Natural Language
Processing Techniques [0.9387233631570752]
我々は、気候学における特定の地理を特定するために、名前付きエンティティ認識(NER)にBERT(Bidirectional Representations from Transformers)を用いる。
地域ごとの気候傾向分析を行い、特定の地域での気候変動に関連する主要なテーマや関心点を特定する。
これらの地域固有の気候データの詳細な調査は、よりカスタマイズされた政策作成、適応、緩和戦略の作成を可能にする。
論文 参考訳(メタデータ) (2024-01-11T16:44:59Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - AI for Anticipatory Action: Moving Beyond Climate Forecasting [0.0]
災害対応機関は、気象予報のパラダイムから予報行動へと移行している。
機械学習モデルは、気候予測において非常に強力なものになりつつある。
論文 参考訳(メタデータ) (2023-07-28T17:32:59Z) - Proceedings of AAAI 2022 Fall Symposium: The Role of AI in Responding to
Climate Challenges [4.608293854632696]
AIは、気候変動の緩和、適応、気候科学の応用を支援することができる。
また、温室効果ガスを放出する化石燃料の使用を加速することで、気候作用を阻害する。
このシンポジウムは、学術、産業、政府、市民社会の参加者を集めて、気候変動とAIの交差点を探求した。
論文 参考訳(メタデータ) (2022-12-27T22:28:56Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Artificial Intelligence and Innovation to Reduce the Impact of Extreme
Weather Events on Sustainable Production [1.290382979353427]
極度の天候の予測不可能は 持続可能な生産と 陸地での生活を危険にさらす
AI(Artificial Intelligent)、IoT(Internet of Things)、ブロックチェーン(ブロックチェーン)、3Dプリンティング(3Dプリンティング)、バーチャルおよび拡張現実(VRとAR)といった現代技術は、極端な天候のリスクと影響を減らすことを約束している。
しかし、これらの技術がどのように極端な気象の影響を減らすのに役立つかについての研究の方向性は明らかになっていない。
論文 参考訳(メタデータ) (2022-09-21T06:52:39Z) - Climate Change & Computer Audition: A Call to Action and Overview on
Audio Intelligence to Help Save the Planet [98.97255654573662]
この研究は、オーディオインテリジェンスが気候に関わる課題を克服するために貢献できる領域の概要を提供する。
我々は、地球、水、空気、火、エーテルの5つの要素に従って、潜在的なコンピュータオーディションの応用を分類する。
論文 参考訳(メタデータ) (2022-03-10T13:32:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。