論文の概要: Towards A Comprehensive Assessment of AI's Environmental Impact
- arxiv url: http://arxiv.org/abs/2405.14004v1
- Date: Wed, 22 May 2024 21:19:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 20:04:17.211878
- Title: Towards A Comprehensive Assessment of AI's Environmental Impact
- Title(参考訳): AIの環境影響の総合評価に向けて
- Authors: Srija Chakraborty,
- Abstract要約: 機械学習に対する最近の関心の高まりは、AI/MLの大規模採用に拍車をかけた。
ライフサイクルを通じて、AI/MLから環境への影響と劣化を監視するフレームワークが必要である。
本研究では、オープンなエネルギーデータとグローバルに取得した衛星観測を用いて、データセンター周辺におけるAIの多面的影響に関連する環境変数を追跡する手法を提案する。
- 参考スコア(独自算出の注目度): 0.5982922468400899
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence, machine learning (AI/ML) has allowed exploring solutions for a variety of environmental and climate questions ranging from natural disasters, greenhouse gas emission, monitoring biodiversity, agriculture, to weather and climate modeling, enabling progress towards climate change mitigation. However, the intersection of AI/ML and environment is not always positive. The recent surge of interest in ML, made possible by processing very large volumes of data, fueled by access to massive compute power, has sparked a trend towards large-scale adoption of AI/ML. This interest places tremendous pressure on natural resources, that are often overlooked and under-reported. There is a need for a framework that monitors the environmental impact and degradation from AI/ML throughout its lifecycle for informing policymakers, stakeholders to adequately implement standards and policies and track the policy outcome over time. For these policies to be effective, AI's environmental impact needs to be monitored in a spatially-disaggregated, timely manner across the globe at the key activity sites. This study proposes a methodology to track environmental variables relating to the multifaceted impact of AI around datacenters using openly available energy data and globally acquired satellite observations. We present a case study around Northern Virginia, United States that hosts a growing number of datacenters and observe changes in multiple satellite-based environmental metrics. We then discuss the steps to expand this methodology for comprehensive assessment of AI's environmental impact across the planet. We also identify data gaps and formulate recommendations for improving the understanding and monitoring AI-induced changes to the environment and climate.
- Abstract(参考訳): 人工知能、機械学習(AI/ML)は、自然災害、温室効果ガスの排出、生物多様性のモニタリング、農業、気象と気候のモデリング、気候変動の緩和に向けた進歩など、さまざまな環境および気候問題に対する解決策を探求することを可能にする。
しかし、AI/MLと環境の交差は常にポジティブであるとは限らない。
最近のMLへの関心の高まりは、膨大な量のデータを処理することで可能になった。
この関心は、しばしば見落とされ、報告されていない天然資源に多大な圧力をかける。
政策立案者やステークホルダーに適切な標準とポリシーを実装し、時間の経過とともにポリシー結果を追跡するために、ライフサイクルを通じてAI/MLの環境影響と劣化を監視するフレームワークが必要である。
これらのポリシーを効果的にするためには、AIの環境影響を、主要なアクティビティサイトにおいて、世界中で空間的に分散し、タイムリーに監視する必要がある。
本研究では、オープンなエネルギーデータとグローバルに取得した衛星観測を用いて、データセンター周辺におけるAIの多面的影響に関連する環境変数を追跡する手法を提案する。
アメリカ合衆国北バージニアのケーススタディでは、より多くのデータセンターをホストし、複数の衛星ベースの環境指標の変化を観測する。
次に、この方法論を拡張して、地球全体のAIの環境影響を総合的に評価する方法について論じる。
また、AIが引き起こす環境や気候の変化の理解とモニタリングを改善するために、データのギャップを特定し、推奨を定式化します。
関連論文リスト
- AI, Climate, and Regulation: From Data Centers to the AI Act [2.874893537471256]
我々は、特にデータセンターとAIの気候関連規制に関するガイダンスを提供することを目標としている。
我々は、AIの推論から、これまで未解決であったエネルギー消費の報告を、その範囲に戻すために、AI法の具体的な解釈を提案する。
我々は、環境問題を含むAI法を強制リスクアセスメントに解釈することを主張する。
論文 参考訳(メタデータ) (2024-10-09T08:43:53Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。
高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。
コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (2023-11-01T11:16:41Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Towards Environmentally Equitable AI via Geographical Load Balancing [40.142341503145275]
本稿では、その地域的負の環境影響のバランスをとることによって、AIの環境不平等に対処する第一歩を踏み出す。
大規模言語AIモデルに対する推論要求を提供する地理的に分散した10のデータセンタを考慮し、トレースベースのシミュレーションを実行する。
その結果,既存のGLBアプローチは環境不平等を増大させる可能性を示し,提案したエクイティ対応GLBは,炭素および水のフットプリントにおける地域格差を著しく低減できることを示した。
論文 参考訳(メタデータ) (2023-06-20T17:13:33Z) - Towards Sustainable Artificial Intelligence: An Overview of
Environmental Protection Uses and Issues [0.0]
本稿では,明日の生態学的課題に対応するエネルギー消費技術のパラドックスについて述べる。
これは、ユースケースや具体的な例を示すために、グリーンプレイヤー向けのAIから多くの例を引き合いに出している。
環境の次元は、AIの幅広い倫理的問題の一部であり、長期的にAIの持続可能性を保証するために不可欠である。
論文 参考訳(メタデータ) (2022-12-22T14:31:48Z) - Power and accountability in reinforcement learning applications to
environmental policy [0.0]
強化学習(Reinforcement Learning, RL)は、どちらも最大の約束を持ち、最も迫る危険を提示する。
本稿では,RLによる政策が環境領域における既存の電力関係にどのように影響するかを考察する。
論文 参考訳(メタデータ) (2022-05-22T19:31:37Z) - Unraveling the hidden environmental impacts of AI solutions for
environment [0.04588028371034406]
過去10年間、人工知能はこのような劇的な進歩に遭遇し、現在、環境問題を解決するツールとして選択されている。
ディープラーニングコミュニティは、より多くのパラメータを持つトレーニングモデルには大量のエネルギーと結果としてGHG排出量が必要であることに気付き始めた。
本稿では,「緑のためのAI」の負の影響について考察する。
論文 参考訳(メタデータ) (2021-10-22T14:56:47Z) - Empowering Local Communities Using Artificial Intelligence [70.17085406202368]
人中心の観点から、AIが社会に与える影響を探求する上で重要なトピックとなっている。
市民科学におけるこれまでの研究は、AIを使って研究に大衆を巻き込む方法を特定してきた。
本稿では,コミュニティ市民科学にAIを適用する上での課題について論じる。
論文 参考訳(メタデータ) (2021-10-05T12:51:11Z) - Applications of physics-informed scientific machine learning in
subsurface science: A survey [64.0476282000118]
地球系は、化石エネルギー探査、廃棄物処理、地質炭素隔離、再生可能エネルギー生成などの人間の活動によって変化した地質形成です。
したがって、ジオシステムの責任ある使用と探索は、効率的な監視、リスクアセスメント、および実用的な実装のための意思決定支援ツールに依存するジオシステムガバナンスにとって重要です。
近年の機械学習アルゴリズムと新しいセンシング技術の急速な進歩は、地下研究コミュニティがジオシステムガバナンスの有効性と透明性を向上させる新しい機会を提示しています。
論文 参考訳(メタデータ) (2021-04-10T13:40:22Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z) - A survey on applications of augmented, mixed and virtual reality for
nature and environment [114.4879749449579]
拡張現実(AR)、仮想現実(VR)、複合現実(MR)は、彼らが提供できるエンゲージメントとエンリッチな体験のために、大きな潜在能力を持つ技術である。
しかし、環境応用の分野でAR、VR、MRがもたらす可能性はまだ広く研究されていない。
本研究は,環境に有利な既存のAR/VR/MRアプリケーションを発見・分類したり,環境問題に対する意識を高めることを目的とした調査の結果を示す。
論文 参考訳(メタデータ) (2020-08-27T09:59:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。