論文の概要: Neural Computing
- arxiv url: http://arxiv.org/abs/2107.02744v1
- Date: Tue, 6 Jul 2021 17:21:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-07 16:41:31.145109
- Title: Neural Computing
- Title(参考訳): ニューラルコンピューティング
- Authors: Ayushe Gangal, Peeyush Kumar, Sunita Kumari and Aditya Kumar
- Abstract要約: この章は、世界の問題とそれらの問題に利用可能なソリューションについて、次のレベルの理解を提供することを目的としています。
この章では、社会問題について論じ、これまでに提示された理論や研究によって様々な解決策が与えられている。
- 参考スコア(独自算出の注目度): 0.48527223155171606
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This chapter aims to provide next-level understanding of the problems of the
world and the solutions available to those problems, which lie very well within
the domain of neural computing, and at the same time are intelligent in their
approach, to invoke a sense of innovation among the educationalists,
researchers, academic professionals, students and people concerned, by
highlighting the work done by major researchers and innovators in this field
and thus, encouraging the readers to develop newer and more advanced techniques
for the same. By means of this chapter, the societal problems are discussed and
various solutions are also given by means of the theories presented and
researches done so far. Different types of neural networks discovered so far
and applications of some of those neural networks are focused on, apart from
their theoretical understanding, the working and core concepts involved in the
applications.
- Abstract(参考訳): This chapter aims to provide next-level understanding of the problems of the world and the solutions available to those problems, which lie very well within the domain of neural computing, and at the same time are intelligent in their approach, to invoke a sense of innovation among the educationalists, researchers, academic professionals, students and people concerned, by highlighting the work done by major researchers and innovators in this field and thus, encouraging the readers to develop newer and more advanced techniques for the same.
本章では社会問題について論じ、これまでに提示された理論や研究によっても様々な解決法が提示されている。
これまでに発見されたさまざまなタイプのニューラルネットワークと、それらのニューラルネットワークの応用は、その理論的理解とは別に、アプリケーションに関わる動作とコアの概念に焦点を当てている。
関連論文リスト
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Reasoning Algorithmically in Graph Neural Networks [1.8130068086063336]
ニューラルネットワークの適応学習能力にアルゴリズムの構造的および規則に基づく推論を統合することを目的としている。
この論文は、この領域の研究に理論的および実践的な貢献を提供する。
論文 参考訳(メタデータ) (2024-02-21T12:16:51Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Advanced Computing and Related Applications Leveraging Brain-inspired
Spiking Neural Networks [0.0]
スパイクニューラルネットワークは、脳に似たコンピューティングを実現する人工知能のコアの1つである。
本稿では,5つのニューロンモデルの強み,弱さ,適用性について要約し,5つのネットワークトポロジの特徴を解析する。
論文 参考訳(メタデータ) (2023-09-08T16:41:08Z) - Machine Unlearning: A Survey [56.79152190680552]
プライバシ、ユーザビリティ、および/または忘れられる権利のために、特定のサンプルに関する情報をマシンアンラーニングと呼ばれるモデルから削除する必要がある特別なニーズが生まれている。
この新興技術は、その革新と実用性により、学者と産業の両方から大きな関心を集めている。
この複雑なトピックを分析したり、さまざまなシナリオで既存の未学習ソリューションの実現可能性を比較したりした研究はない。
この調査は、未学習のテクニックに関する卓越した問題と、新しい研究機会のための実現可能な方向性を強調して締めくくった。
論文 参考訳(メタデータ) (2023-06-06T10:18:36Z) - Brain-inspired learning in artificial neural networks: a review [5.064447369892274]
人工ニューラルネットワークにおける脳にインスパイアされた学習表現について概説する。
これらのネットワークの能力を高めるために, シナプス可塑性などの生物学的に妥当な機構の統合について検討する。
論文 参考訳(メタデータ) (2023-05-18T18:34:29Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - Neuro-Symbolic Learning: Principles and Applications in Ophthalmology [20.693460748187906]
ニューロシンボリックラーニング(NeSyL)の概念は、記号表現の側面を取り入れ、ニューラルネット(NeSyL)に共通の感覚をもたらす。
NeSyLは、ビデオや画像キャプション、質問回答と推論、健康情報学、ゲノム学など、解釈可能性、推論可能性、説明可能性が重要である領域において、有望な結果を示している。
このレビューでは、最先端のNeSyLアプローチ、その原則、機械学習およびディープラーニングアルゴリズムの進歩、オプタルモロジーのような応用、そして最も重要なのは、この新興分野の今後の展望について包括的に調査する。
論文 参考訳(メタデータ) (2022-07-31T06:48:19Z) - Neural Networks for Path Planning [0.24366811507669117]
本稿では,ロボット経路計画におけるニューラルネットワークの利用を考慮した最新の研究について述べる。
我々の調査は、異なる入力、出力、環境を考慮した問題の異なる定式化のコントラストを示す。
論文 参考訳(メタデータ) (2022-07-02T16:13:13Z) - Theoretical Perspectives on Deep Learning Methods in Inverse Problems [115.93934028666845]
我々は、生成前の先行、訓練されていないニューラルネットワークの先行、および展開アルゴリズムに焦点を当てる。
これらのトピックにおける既存の結果の要約に加えて、現在進行中の課題やオープンな問題も強調する。
論文 参考訳(メタデータ) (2022-06-29T02:37:50Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。