論文の概要: Transfer Learning in Information Criteria-based Feature Selection
- arxiv url: http://arxiv.org/abs/2107.02847v1
- Date: Tue, 6 Jul 2021 19:12:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-08 14:14:24.680459
- Title: Transfer Learning in Information Criteria-based Feature Selection
- Title(参考訳): 情報基準に基づく特徴選択における伝達学習
- Authors: Shaohan Chen, Nikolaos V. Sahinidis and Chuanhou Gao
- Abstract要約: 転送学習をMallowsのCp(TLCp)と組み合わせることで、従来のMallowsのCp基準よりも精度と安定性が向上することを示す。
また,移動学習フレームワークはベイズ情報基準などの他の特徴選択基準にも拡張可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the effectiveness of transfer learning based on
Mallows' Cp. We propose a procedure that combines transfer learning with
Mallows' Cp (TLCp) and prove that it outperforms the conventional Mallows' Cp
criterion in terms of accuracy and stability. Our theoretical results indicate
that, for any sample size in the target domain, the proposed TLCp estimator
performs better than the Cp estimator by the mean squared error (MSE) metric in
the case of orthogonal predictors, provided that i) the dissimilarity between
the tasks from source domain and target domain is small, and ii) the procedure
parameters (complexity penalties) are tuned according to certain explicit
rules. Moreover, we show that our transfer learning framework can be extended
to other feature selection criteria, such as the Bayesian information
criterion. By analyzing the solution of the orthogonalized Cp, we identify an
estimator that asymptotically approximates the solution of the Cp criterion in
the case of non-orthogonal predictors. Similar results are obtained for the
non-orthogonal TLCp. Finally, simulation studies and applications with real
data demonstrate the usefulness of the TLCp scheme.
- Abstract(参考訳): 本稿では,MallowsのCpに基づく移動学習の有効性について検討する。
本稿では,伝達学習をMallowsのCp(TLCp)と組み合わせることで,従来のMallowsのCp基準よりも精度と安定性が高いことを示す手法を提案する。
理論的には, 対象領域の任意のサンプルサイズに対して, 提案したTLCp推定器は, 直交予測器の場合の平均二乗誤差(MSE)メートル法によりCp推定器よりも優れており, ソース領域と対象領域とのタスクの相似性が小さく, 手順パラメータ(複素性ペナルティ)が一定の規則に従って調整されていることを示唆している。
さらに,我々のトランスファー学習フレームワークは,ベイズ情報基準などの他の特徴選択基準にも拡張可能であることを示す。
直交化されたCpの解を解析することにより、非直交予測器の場合のCp基準の解を漸近的に近似する推定器を同定する。
非直交性TLCpについても同様の結果が得られた。
最後に,実データを用いたシミュレーション研究と応用により,tlcpの有用性が示された。
関連論文リスト
- Truncating Trajectories in Monte Carlo Policy Evaluation: an Adaptive Approach [51.76826149868971]
モンテカルロシミュレーションによる政策評価は多くのMC強化学習(RL)アルゴリズムの中核にある。
本研究では,異なる長さの軌跡を用いた回帰推定器の平均二乗誤差のサロゲートとして品質指標を提案する。
本稿では,Robust and Iterative Data Collection Strategy Optimization (RIDO) という適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-17T11:47:56Z) - Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
本稿では,関節のPMFを推定し,そのランクを観測データから自動的に推定する新しい枠組みを提案する。
我々は、様々なモデルパラメータの後方分布を近似するために、変分推論(VI)に基づく決定論的解を導出し、さらに、変分推論(SVI)を利用して、VVIベースのアプローチのスケーラブルバージョンを開発する。
合成データと実映画レコメンデーションデータの両方を含む実験は、推定精度、自動ランク検出、計算効率の点で、VVIおよびSVIベースの手法の利点を示している。
論文 参考訳(メタデータ) (2024-10-08T20:07:49Z) - Bounded P-values in Parametric Programming-based Selective Inference [23.35466397627952]
我々は,p-値の下と上の境界を計算する手法を提案することにより,所望の精度を確保しつつ計算コストを削減する手法を提案する。
本稿では,線形モデルにおける特徴選択と深部ニューラルネットワークにおける注目領域同定のための仮説テスト問題における提案手法の有効性を示す。
論文 参考訳(メタデータ) (2023-07-21T04:55:03Z) - Adaptive sparseness for correntropy-based robust regression via
automatic relevance determination [17.933460891374498]
我々は,最大コレントロピー基準(MCC)に基づくロバスト回帰アルゴリズムと自動妥当性判定(ARD)手法をベイズフレームワークに統合する。
我々は、MCCから固有のノイズ仮定を用いて、明示的な可能性関数を導出し、ARD前の最大後部推定(MAP)を実現する。
MCC-ARDはL1正規化MCCよりも優れた予測性能と特徴選択能力を実現している。
論文 参考訳(メタデータ) (2023-01-31T20:23:32Z) - Adaptive Dimension Reduction and Variational Inference for Transductive
Few-Shot Classification [2.922007656878633]
適応次元の削減によりさらに改善された変分ベイズ推定に基づく新しいクラスタリング法を提案する。
提案手法は,Few-Shotベンチマークにおける現実的非バランスなトランスダクティブ設定の精度を大幅に向上させる。
論文 参考訳(メタデータ) (2022-09-18T10:29:02Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
そこで我々は,PAC-Bayesリスク認定パラダイム内で,グラフ上のメトリックデータを分類するための新しい深層予測器のクラスを提案する。
PAC-Bayesの最近の文献とデータに依存した先行研究に基づいて、この手法は仮説空間上の後続分布の学習を可能にする。
論文 参考訳(メタデータ) (2022-01-26T19:59:14Z) - Proximal Reinforcement Learning: Efficient Off-Policy Evaluation in
Partially Observed Markov Decision Processes [65.91730154730905]
医療や教育などの観察データへのオフライン強化学習の適用においては、観察された行動は観測されていない要因に影響される可能性があるという一般的な懸念がある。
ここでは、部分的に観察されたマルコフ決定過程(POMDP)における非政治評価を考慮し、この問題に取り組む。
我々は、近位因果推論の枠組みをPOMDP設定に拡張し、識別が可能となる様々な設定を提供する。
論文 参考訳(メタデータ) (2021-10-28T17:46:14Z) - Unsupervised learning of disentangled representations in deep restricted
kernel machines with orthogonality constraints [15.296955630621566]
Constr-DRKMは、非教師なしデータ表現の学習のためのディープカーネル手法である。
本研究では,不整合特徴学習における提案手法の有効性を定量的に評価する。
論文 参考訳(メタデータ) (2020-11-25T11:40:10Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Re-Assessing the "Classify and Count" Quantification Method [88.60021378715636]
分類とカウント(CC)は、しばしば偏りのある推定器である。
以前の作業では、CCの適切に最適化されたバージョンを適切に使用できなかった。
最先端の手法に劣っているものの、ほぼ最先端の精度を実現している、と我々は主張する。
論文 参考訳(メタデータ) (2020-11-04T21:47:39Z) - Selective Classification via One-Sided Prediction [54.05407231648068]
片側予測(OSP)に基づく緩和は、実際に関係する高目標精度体制において、ほぼ最適カバレッジが得られるSCスキームをもたらす。
理論的には,SCとOSPのバウンダリ一般化を導出し,その手法が小さな誤差レベルでのカバレッジにおいて,技術手法の状態を強く上回ることを示す。
論文 参考訳(メタデータ) (2020-10-15T16:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。