論文の概要: Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors
- arxiv url: http://arxiv.org/abs/2410.06329v1
- Date: Tue, 8 Oct 2024 20:07:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 06:29:16.937900
- Title: Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors
- Title(参考訳): 確率質量関数テンソルのベイズ推定とチューニング自由ランク検出
- Authors: Joseph K. Chege, Arie Yeredor, Martin Haardt,
- Abstract要約: 本稿では,関節のPMFを推定し,そのランクを観測データから自動的に推定する新しい枠組みを提案する。
我々は、様々なモデルパラメータの後方分布を近似するために、変分推論(VI)に基づく決定論的解を導出し、さらに、変分推論(SVI)を利用して、VVIベースのアプローチのスケーラブルバージョンを開発する。
合成データと実映画レコメンデーションデータの両方を含む実験は、推定精度、自動ランク検出、計算効率の点で、VVIおよびSVIベースの手法の利点を示している。
- 参考スコア(独自算出の注目度): 17.640500920466984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining a reliable estimate of the joint probability mass function (PMF) of a set of random variables from observed data is a significant objective in statistical signal processing and machine learning. Modelling the joint PMF as a tensor that admits a low-rank canonical polyadic decomposition (CPD) has enabled the development of efficient PMF estimation algorithms. However, these algorithms require the rank (model order) of the tensor to be specified beforehand. In real-world applications, the true rank is unknown. Therefore, an appropriate rank is usually selected from a candidate set either by observing validation errors or by computing various likelihood-based information criteria, a procedure which is computationally expensive for large datasets. This paper presents a novel Bayesian framework for estimating the joint PMF and automatically inferring its rank from observed data. We specify a Bayesian PMF estimation model and employ appropriate prior distributions for the model parameters, allowing for tuning-free rank inference via a single training run. We then derive a deterministic solution based on variational inference (VI) to approximate the posterior distributions of various model parameters. Additionally, we develop a scalable version of the VI-based approach by leveraging stochastic variational inference (SVI) to arrive at an efficient algorithm whose complexity scales sublinearly with the size of the dataset. Numerical experiments involving both synthetic data and real movie recommendation data illustrate the advantages of our VI and SVI-based methods in terms of estimation accuracy, automatic rank detection, and computational efficiency.
- Abstract(参考訳): 統計信号処理や機械学習において,観測データから確率変数の集合の結合確率質量関数(PMF)の信頼度を推定することは重要な目的である。
低ランク正準多進分解(CPD)を許容するテンソルとしての関節PMFのモデル化により,効率的なPMF推定アルゴリズムの開発が可能となった。
しかし、これらのアルゴリズムはテンソルのランク(モデル順序)を事前に指定する必要がある。
実世界の応用において、真のランクは未知である。
したがって、検証エラーを観測したり、様々な可能性ベースの情報基準を計算したりすることで、適切なランクが設定された候補から選択されるのが普通である。
本稿では,共同PMFを推定し,そのランクを観測データから自動的に推定する新しいベイズ的枠組みを提案する。
ベイジアンPMF推定モデルを定義し、モデルパラメータに適切な事前分布を適用し、単一のトレーニング実行によるチューニング不要なランク推論を可能にする。
次に、変動推論(VI)に基づく決定論的解を導出し、様々なモデルパラメータの後方分布を近似する。
さらに,確率的変分推論(SVI)を活用して,複雑性がデータセットのサイズと直交的にスケールする効率的なアルゴリズムを構築することにより,VIベースのアプローチのスケーラブルバージョンを開発する。
合成データと実写映画レコメンデーションデータの両方を含む数値実験は、推定精度、自動ランク検出、計算効率の点で、VVIおよびSVIベースの手法の利点を示している。
関連論文リスト
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Anomaly Detection Under Uncertainty Using Distributionally Robust
Optimization Approach [0.9217021281095907]
異常検出は、大多数のパターンに従わないデータポイントを見つける問題として定義される。
1クラスのサポートベクトルマシン(SVM)メソッドは、通常のデータポイントと異常を区別するための決定境界を見つけることを目的としている。
誤分類の確率が低い分布的に頑健な確率制約モデルを提案する。
論文 参考訳(メタデータ) (2023-12-03T06:13:22Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Two-Stage Robust and Sparse Distributed Statistical Inference for
Large-Scale Data [18.34490939288318]
本稿では,高次元データやオフレーヤによって汚染される可能性のある大規模データを含む設定において,統計的推論を行うという課題に対処する。
空間性を促進することによって高次元モデルに対処する2段階の分散および頑健な統計的推論手法を提案する。
論文 参考訳(メタデータ) (2022-08-17T11:17:47Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference [0.0]
シミュレーションに基づく推論で生じるモデル誤特定のタイプを概念化し、これらの誤特定の下でベイズフローフレームワークの性能を体系的に検討する。
本稿では、潜在データ空間に確率的構造を課し、最大平均不一致(MMD)を利用して破滅的な誤特定を検知する拡張最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T13:25:27Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
PGBM(Probabilistic Gradient Boosting Machines)は、確率的予測を生成する手法である。
既存の最先端手法と比較してPGBMの利点を実証的に示す。
論文 参考訳(メタデータ) (2021-06-03T08:32:13Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。